Regulation of the Actin Cytoskeleton by Inositol Phospholipid Pathways

  • David E. Kandzari
  • Jie Chen
  • Pascal J. Goldschmidt-Clermont
Part of the Subcellular Biochemistry book series (SCBI, volume 26)


Changes in the actin cytoskeleton are a fundamental part of the motile response of cells to extracellular ligands. Dynamic alterations in both the structural and biochemical properties of the actin network mediate changes in cell shape and migration (Cooper, 1991; Gips et al., 1994). This meshwork of microfilaments is responsible for many characteristic intracellular structures, including stress fibers, the cortical network, and contractile rings. Actin filament turnover, for example, is associated with the formation of microspikes and lamellipodia at the leading edge of motile cells. In migrating cells, the forward extension of the cellular lamellipodium, a fan-shaped structure filled with a dense, cross-linked meshwork of actin filaments, is driven by the polarized assembly of actin monomers. This assembly is not unique to the lamellipodium, however, because it shares features with other actin-based motile processes occurring beneath the plasma membrane of stimulated platelets, neutrophils, chemotactic amoebas, or even at the rear of the pathogenic bacterium Listeria monocytogenes during its propulsive movement through the host cell cytoplasm (Theriot et al., 1994).


Actin Filament Actin Cytoskeleton Focal Adhesion Actin Stress Fiber Growth Factor Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arber, S., Halder, G., and Caroni, P., 1994, Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation, Cell 79:221–231.PubMedCrossRefGoogle Scholar
  2. Banno, Y., Nakashima, T., Kumada, T., Ebisawa, K., Nonomura, Y., and Nozawa, Y., 1992, Effects of gelsolin on human platelet cytosolic phosphoinositide-phospholipase C isozymes, J. Biol. Chem. 267:6488–6394.PubMedGoogle Scholar
  3. Banno, Y., Okano, Y., and Nozawa, Y., 1994, Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-δ1, J. Biol. Chem. 269:15846–15852.PubMedGoogle Scholar
  4. Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V., and Schlessinger, J., 1993, SH3 domains direct cellular localization of signalling molecules, Cell 74:83–90.PubMedCrossRefGoogle Scholar
  5. Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.PubMedCrossRefGoogle Scholar
  6. Bourne, H. R., Sanders, D. A., and McCormick, F., 1990, The GTPase superfamily: A conserved switch for diverse cell functions, Nature 348:125–132.PubMedCrossRefGoogle Scholar
  7. Bourne, H. R., Sanders, D. A., and McCormick, F., 1991, The GTPase superfamily: Conserved structure and molecular mechanism, Nature 349:117–127.PubMedCrossRefGoogle Scholar
  8. Burridge, K., Petch, L. A., and Romer, L. H., 1992, Signals from focal adhesions, Curr. Biol. 2:537–539.PubMedCrossRefGoogle Scholar
  9. Carpenter, G., 1992, Receptor tyrosine kinase substrates: src homology domains and signal transduction, FASEB J. 6:3283–3289.PubMedGoogle Scholar
  10. Chinkers, M., McKanna, J. A., and Cohen, S., 1979, Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor, J. Cell Biol. 83:260–265.PubMedCrossRefGoogle Scholar
  11. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., and Schwartz, M. A., 1994, The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells, Cell 79:507–513.PubMedCrossRefGoogle Scholar
  12. Cooper, J. A., 1991, The role of actin polymerization in cell motility, Annu. Rev. Physiol. 53:585–605.PubMedCrossRefGoogle Scholar
  13. Crawford, L. E., Tucker, R. W., Heldman, A., and Goldschmidt-Clermont, P. J., 1994, Actin regulation and surface catalysis, in Actin: Biophysics, Biochemistry, and Cell Biology (J. E. Estes and P. J. Higgins, eds.), pp. 105–112, Plenum Press, New York.Google Scholar
  14. Dadabay, C. Y., Patton, E., Cooper, J. A., and Pike, L., 1991, Lack of correlation between changes in polyphosphoinositide levels and actin/gelsolin complexes in A431 cells treated with epidermal growth factor, J. Cell Biol. 112:1151–1156.PubMedCrossRefGoogle Scholar
  15. Davies, P. F., 1993, Endothelium as a signal transduction interface for flow forces: Cell surface dynamics, Thromb. Haemstas. 70:124–128.Google Scholar
  16. Drobak, B. K., Watkins, P.A.C., Valenta, R., Dove, S. K., Lloyd, C. W., and Staiger, C. J., 1994, Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein profilin, Plant J. 6:389–400.CrossRefGoogle Scholar
  17. Eberle, M., Traynor-Kaplan, A. E., Sklar, L. A., and Norgauer, J., 1990, Is there a relationship between phosphatidylinositol trisphosphate and F-actin polymerization in human neutrophils?, J. Biol. Chem. 265:16725–16728.PubMedGoogle Scholar
  18. Fanti, W. J., Johnson, D. E., and Williams, L. T., 1993, Signalling by receptor tyrosine kinases, Annu. Rev. Biochem. 62:453–481.CrossRefGoogle Scholar
  19. Finkel, T., Theriot, J. A., Dise, K., Tomaselli, G. F., and Goldschmidt-Clermont, P. J., 1994, Dynamic actin structures stabilized by profilin, Proc. Natl. Acad. Sci. USA. (in press).Google Scholar
  20. Flick, J. S., and Thorner, J. 1993, Genetic and biochemical characterization of a phosphatidyl-inositol-specific phospholipase C in Saccharomyces cerevisiae, Mol. Cell Biol. 13:5861–5876.PubMedGoogle Scholar
  21. Friend, C. M. 1993, Catalysis on surfaces, Sci. Am. 268:74–80.CrossRefGoogle Scholar
  22. Fujita, H., Banno, Y., Mullauer, L. Ishizaki, A. Nozawa, Y., and Kuzumaki, N., 1993, Enhanced inhibition of phospholipase Cγ1 by mutated gelsolin derived from a flat revertant of EJ-ras oncogene-transformed NIH/3T3 cells, in Cold Spring Harbor Laboratory Meeting on the Cyto-skeleton and Cell Function, p. 201, Cold Spring Harbor Laboratory, New York.Google Scholar
  23. Fukami, K., Furuhashi, K., Inagaki, M., Endo, T., Hatano, S., and Takenawa, T., 1993, Requirement of phosphatidylinositol 4,5 bisphosphate for alpha-actinin function, Nature 359:150–152.CrossRefGoogle Scholar
  24. Gips, S. J., Kandzari, D. E., and Goldschmidt-Clermont, P. J., 1994, Growth factor receptors, phospholipases, phospholipid kinases, and actin reorganization, Semin. Cell Biol. 5:201–208.PubMedCrossRefGoogle Scholar
  25. Goldschmidt-Clermont, P. J., and Janmey, P. A., 1991, Profilili: A weak CAP for actin and ras, Cell 66:419–421.PubMedCrossRefGoogle Scholar
  26. Goldschmidt-Clermont, P. J., Machesky, L. M., Baldassare, J. J., and Pollard, T. D., 1990, The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase-C, Science 247:1575–1578.PubMedCrossRefGoogle Scholar
  27. Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S. G., and Pollard, T. D., 1991, Regulation of phospholipase Cγ1 by profilin and tyrosine phosphorylation, Science 251:1231–1233.PubMedCrossRefGoogle Scholar
  28. Goldschmidt-Clermont, P. J., Mendelsohn, M. E., and Gibbs, J. B. 1992, Rac and rho in control, Curr. Biol. 2:668–671.CrossRefGoogle Scholar
  29. Graziani, A., Kapeller, R., and Soltoff, S., 1991, Oncogenes and signal transduction, Cell 64:281–302.PubMedCrossRefGoogle Scholar
  30. Hadari, Y. R., Tzahar, E., Nadiv, O., Rothenberg, P., Roberts, C. T., LeRoith, D., Yarden, Y., and Zick, Y., 1992, Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3′-kinase upon its association with ppl85 (IRS-1) in intact rat livers, J. Biol. Chem. 267:17483–17486.PubMedGoogle Scholar
  31. Handler, J. A., Danilowicz, R. M., and Eling, T. E., 1990, Mitogenic signalling by epidermal growth factor (EGF), but not platelet derived growth factor, requires arachidonic acid metabolism in BALB/c 3T3 cells, J. Biol. Chem. 265:3669–3673.PubMedGoogle Scholar
  32. Hartwig, J. H., Thelen, M., Rosen, A., Janmey, P. A., Nairn, A. C., and Aderem, A., 1992, MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin, Nature 356:618–622.PubMedCrossRefGoogle Scholar
  33. Hattori, S., Fukuda, M., Yamashita, T., Nakamura, S., Gotoh, Y., and Nishida, E., 1992, Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system, J. Biol. Chem. 267:20346–20351.PubMedGoogle Scholar
  34. Heldman, A. W., and Goldschmidt-Clermont, P. J., 1993, Cell signalling and motile response, in Cell Adhesion and Motility (R. M. Warn, ed.), pp. 317–324, The Society of Experimental Biology, London.Google Scholar
  35. Heldman, A. W., Kandzari, D. E., Tucker, R. W., Crawford, L. E., Fearon, E. R., Koblan, K. S., and Goldschmidt-Clermont, P. J., 1996, EJ-ras inhibits phospholipase Cγ1, but not actin polymerization induced by PDGF-BB via phosphatidylinositol-3 kinase, Circ. Res., in press.Google Scholar
  36. Howe, L. R., Leevers, S. J., Gomez, N., Nakielny, S., Cohen, P., and Marshall, C. J., 1992, Activation of the MAP kinase pathway by the protein kinase raf, Cell 71:335–342.PubMedCrossRefGoogle Scholar
  37. Janmey, P. A., 1994, Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly, Annu. Rev. Physiol. 56:169–191.PubMedCrossRefGoogle Scholar
  38. Janmey, P. A., and Stossel, T. P., 1989, Gelsolin-polyphosphoinositide interaction, J. Biol. Chem. 264:4825–4831.PubMedGoogle Scholar
  39. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S., 1992, Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells, Mol. Cell. Biol. 12:4687–4693.PubMedGoogle Scholar
  40. Kim, H. K., Kim, J. W., Zilberstein, A. Margolis, B., Kim, J. G., Schlessinger, J., and Rhee, S. G., 1991, PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254, Cell 65:435–441.PubMedCrossRefGoogle Scholar
  41. King, C. E., Hawkins, P. T., Stephens, L. A., and Michell, R. H., 1989, Determination of the steady-state turnover rates of the metabolically active pools of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5 bisphosphate in human erythrocytes, Biochem. J. 259:893–896.PubMedGoogle Scholar
  42. Kornberg, L., Earp, H. S., Parson, J. T, Schaller, M., Juliano, R. L., 1992, Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase, J. Biol. Chem. 267:23439–23442.PubMedGoogle Scholar
  43. Kotani, K., Yonezawa, K., Hara, K., Ueda, H., Kitamura, Y., Sakaue, H., Ando, A., Chavanieu, A., Calas, B., and Grigorescu, F., 1994, Involvement of phosphoinositide 3-kinase in insulin-or IGF-1-induced membrane ruffling, EMBO J. 13:2313–2321.PubMedGoogle Scholar
  44. Kreck, M. L., Uhlinger, D. J. Tyagi, W. R., Inge, K. L., and Lambeth, J. D., 1994, Participation of the small molecular weight GTP-binding protein rac1 in cell-free activation and assembly of the respiratory burst oxidase, J. Biol. Chem. 269:4161–4168.PubMedGoogle Scholar
  45. Lassing, I., and Lindberg, U., 1985, Specific interaction between phosphatidylinositol 4,5 bisphos-phate and profilactin, Nature 318:472–474.CrossRefGoogle Scholar
  46. Leevers, S. J. Paterson, H. F., and Marshall, C. J., 1994, Requirement for ras in raf activation is overcome by targeting raf to the plasma membrane, Nature 369:411–414.PubMedCrossRefGoogle Scholar
  47. Lenormand, P., Pages, G., Sardet, C., L’Allemain, G., Meloche, S., and Pouyssegur, J., 1993a, MAP kinases: Activation, subcellular localization, and role in the control of cell proliferation, Adv. Second Messenger Phosphoprotein Res. 28:237–244.PubMedGoogle Scholar
  48. Lenormand, P., Sardet, C., Pages, G., L’Allemain, G., Brunet, A., and Pouyssegur, J., 1993b, Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts, J. Cell. Biol. 122:1079–1088.PubMedCrossRefGoogle Scholar
  49. Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., and Davis, R. J., 1993, cPLA2 is phosphorylated and activated by MAP kinase, Cell 72:269–278.PubMedCrossRefGoogle Scholar
  50. Lowenstein, E. J., Daly, R. J., Batzer, A. G., Li, W., Margolis, B., Lammers, R. Ullrich, A., Skolnik Bar-Sagi, D., and Schlessinger, J., 1992, The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signalling, Cell 70:431–442.PubMedCrossRefGoogle Scholar
  51. Machesky, L. M., Goldschmidt-Clermont, P. J., and Pollard, T. D. 1990, The affinities of human platelet and Acanthamoeba profilin isoforms for polyphospho-inositides account for their relative abilities to inhibit phospholipase C., Cell Regul. 1:937–950.PubMedGoogle Scholar
  52. Margolis, B., Zilberstein, A., Franks, C., Felder, S., Kremer, S., Ullrich, A., Rhee, S. G.. Skorecki, K., and Schlessinger, J., 1990, Effect of phospholipase C-gamma overexpression on PDGF-induced second messengers and mitogenesis, Science 248:607–610.PubMedCrossRefGoogle Scholar
  53. Marshall, M. S., 1993, The effector interactions of p21ras, Trends Biochem. Sci. 18:250–254.PubMedCrossRefGoogle Scholar
  54. Matuoka, K., Shibasaki, F., Shibata, M., and Takenawa, T., 1993, Ash-Grb-2, a SH2/SH3-containing protein, couples to signalling for mitogenesis and cytoskeletal reorganization by EGF and PDGF, EMBO J. 12:3467–3473.PubMedGoogle Scholar
  55. McNamee, H. P., Ingber, D. E., and Schwartz, M. A., 1993, Adhesion of fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown, J. Cell Biol. 121:673–678.PubMedCrossRefGoogle Scholar
  56. Meisenhelder, J., Pann-Ghill, S., Rhee, S. G., and Hunter, T., 1989, Phospholipase C γ1 is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro, Cell 57:1109–1116.PubMedCrossRefGoogle Scholar
  57. Mosior, M., and Epand, R. M., 1994, Characterization of the calcium-binding site that regulates the association of protein kinase C with phospholipid bilayers, J. Biol. Chem. 269:13798–13805.PubMedGoogle Scholar
  58. Myers, M. G., Backer, J. M., Sun, X. J., Shoelson, S., Hu, P., Schlesinger J., Yoakim, M., Schaffhausen, B., and White, M. 1992. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85, Proc. Natl. Acad. Sci. USA. 89:10350–10354.PubMedCrossRefGoogle Scholar
  59. Neel, B. G., 1993, Structure and function of SH2-domain containing tyrosine phosphatases, Semin. Cell Biol. 4:419–432.PubMedCrossRefGoogle Scholar
  60. Park, D., Jhon, D. Y., Lee, C. W., Lee, K. H., and Rhee, S. G., 1993, Activation of phospholipase C isozymes by G protein beta gamma subunits, J. Biol. Chem. 268:4573–4576.PubMedGoogle Scholar
  61. Peppelenbosch, M. P., Tertoolen, L.G.J., and de Laat, S. W., 1991, Epidermal growth factor-activated calcium and potassium channels, J. Biol. Chem. 266:19938–19944.PubMedGoogle Scholar
  62. Peppelenbosch, M. P., Tertoolen, L.G.J., Hage, W. J., and de Laat, S. W., 1993, Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products, Cell 74:565–575.PubMedCrossRefGoogle Scholar
  63. Pollard, T. P., Doberstein, S. K., and Zot, H. G., 1991, Myosin I, Annu. Rev. Physiol 53:653–681.PubMedCrossRefGoogle Scholar
  64. Rhee, S. G., 1991, Inositol phospholipid-specific phospholipase C: Interaction of the gl isoform with tyrosine kinase, Trends Biochem. Sci. 16:297–301.PubMedCrossRefGoogle Scholar
  65. Ridley, A. J., and Hall, A., 1992, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell 70:389–399.PubMedCrossRefGoogle Scholar
  66. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A., 1992, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell 70:401–410.PubMedCrossRefGoogle Scholar
  67. Ridley, A. J., Self, A. J., Kasmi, F., Paterson, H. F., Hall, A., Marshall, C. J., and Ellis, C., 1993, Rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo, EMBO J. 12:5151–5160.PubMedGoogle Scholar
  68. Ruoslahti, E., and Reed, J. C., 1994, Anchorage dependence, integrins, and apoptosis, Cell 77:477–478.PubMedCrossRefGoogle Scholar
  69. Schlessinger, J., and Ullrich, A., 1992, Growth factor signalling by receptor tyrosine kinases, Neuron 9:383–391.PubMedCrossRefGoogle Scholar
  70. Schmeichel, K. L., and Beckerle. M. C., 1994, The LIM domain is a modular protein-binding interface, Cell 79:211–219.PubMedCrossRefGoogle Scholar
  71. Shattil, S. J., 1993, Regulation of platelet anchorage and signalling by integrin allbb3, Thromb. Haemostas. 70:224–228.Google Scholar
  72. Simon, M. A., Bowtell, D.D.L., Dodson, G. S., Laverty, T. R., and Rubin, G. M., 1991, Ras1 and putative guanine nucleotide exchange factor perform crucial steps in signalling by the sevenless protein tyrosine kinases, Cell 67:701–716.PubMedCrossRefGoogle Scholar
  73. Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J., 1991, Cloning of PI3-kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65:83–90.PubMedCrossRefGoogle Scholar
  74. Skolnik, E. Y., Lee, C. H., Batzer, A., Vicentini, L. M., Zhou, M., Daly, R., Myers, M. J., Backer, J. M., Ullrich, A., and White, M. F., 1993, The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS-1 and Shc: Implications for insulin control of ras signalling, EMBO J. 12:1929–1936.PubMedGoogle Scholar
  75. Smith, M. R., Liu, Y., Matthews, N. T., Rhee, S. G., Sung, W. K., and Kung, H., 1994, Phospholipase C-gl can induce DNA synthesis by a mechanism independent of its lipase activity, Proc. Natl. Acad. Sci. U.S.A. 91:6554–6558.PubMedCrossRefGoogle Scholar
  76. Stossel, T. P., 1993, On the crawling of animal cells, Science 260:1086–1094.PubMedCrossRefGoogle Scholar
  77. Taylor, S. J., Chae, H. Z., Rhee, S. G., and Exton, J. H., 1991, Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins, Nature 350:516–518.PubMedCrossRefGoogle Scholar
  78. Theriot, J. A., and Mitchison, T. J., 1992, The nucleation-release model of actin filament dynamics in cell motility, Trends Cell Biol. 2:219–222.PubMedCrossRefGoogle Scholar
  79. Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J., and Mitchison, T. J., 1994, Involvement of profilin in the actin-based motility of L. monocytogenes in cells and cell-free extracts, Cell 76:505–517.PubMedCrossRefGoogle Scholar
  80. Vojtek, A., Haarer, B., Field, J., Gerst, J., Pollard, T. D., Brown, S., and Wigler, M., 1991, Evidence for a functional link between profilin and CAP in yeast S. cerevisiae, Cell 66:497–505.Google Scholar
  81. Wahl, M. I., Jones, G. A., Nishibe, S., Rhee, S. G., and Carpenter, G., 1992a, Growth factor stimulation of phospholipase C-gammal activity. Comparative properties of control and activated enzymes. J. Biol. Chem. 267:10447–10456.PubMedGoogle Scholar
  82. Wahl, M. I., Jones, G. A., Nishibe, S., Rhee, S. G., and Carpenter, G., 1992b, Growth factor stimulation of phospholipase C-gl activity. J. Biol. Chem. 267:10447–10456.PubMedGoogle Scholar
  83. Wennstrom, S., Siegbahn, K., Yokote, A., Arvidson, K., Heldin, C. H., and Mori, S., 1994, Membrane ruffling and Chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3′ kinase, Oncogene 9:651–660.PubMedGoogle Scholar
  84. White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H., and Sigler, P. B., 1990, Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue, Science 250:1560–1563.PubMedCrossRefGoogle Scholar
  85. Williams, N. G., Paradis, H., Agarwal, S., Charest, D. L., Pelech, S. L., and Roberts, T. M., 1993, Raf-1 and p21v-ras cooperate in the activation of mitogen-activated protein kinase, Proc. Natl. Acad. Sci. U.S.A. 90:5772–5776.PubMedCrossRefGoogle Scholar
  86. Wymann, M., and Arcaro, A., 1994, Platelet derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts, Biochem. J. 298:517–520.PubMedGoogle Scholar
  87. Yagisawa, H., Hirata, M., Kanematsu, T., Watanabe, Y., Ozaki, S., Sakuma, K., Tanaka, H., Yabuta, N., Kamata, H., Hirata, H., and Nojima, H., 1994, Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1, J. Biol. Chem. 31:20179–20188.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • David E. Kandzari
    • 1
  • Jie Chen
    • 1
  • Pascal J. Goldschmidt-Clermont
    • 1
  1. 1.Bernard Laboratory, Division of Cardiology, Department of Medicine and Department of Cell Biology and AnatomyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations