Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

Abstract

The isolation of a “diphosphoinositide” fraction from ox brain by Folch (1949) and the observation by Dawson (1954) that radioactive phosphate was rapidly incorporated into its lipids laid the foundations of our present knowledge of the brain phosphoinositides. The structures of the major phosphoinositides, phosphatidylinositol (I), phosphatidylinositol-4 phosphate (II) and phosphatidylinositol-4,5-biphosphate (III) are given in Figure 1. The generally accepted abbreviations used in this chapter are Ptdlns (I), PtdIns 4-P (II), and PtdIns 4,5-P2 (III).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977, Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with 32P phosphate, Biochem. J. 162:61–73.

    PubMed  CAS  Google Scholar 

  • Allison, J.H., Blisner, M. E., Holland, W. H., Hipps, P. P., and Sherman, W. R., 1976, Increased brain myo-inositol 1-phosphate in lithium-treated rats, Biochem. Biophys. Res. Commun. 71:664–670.

    Article  PubMed  CAS  Google Scholar 

  • Asaoka, Y., Nakamura, S., Yoshida, K., and Nishizuka, Y., 1992, Protein kinase C., calcium and phospholipid degredation, Trends Biochem. Sci. 17:414–417.

    Article  PubMed  CAS  Google Scholar 

  • Batty, I. H., and Downes, C. P., 1994, The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediatied phospholipase C activity by Li+ as secondary, selective consequences of inositol depletion in 1321N1 cells, Biochem. J. 297:529–537.

    PubMed  CAS  Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1983, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212:849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G., and Ross, E. M., 1992, Phospholipase Cβ1 is a GTPase-activating protein for Gq11, its physiologic regulator, Cell 70:411–418.

    Article  PubMed  CAS  Google Scholar 

  • Blank, J. L., Shaw, K., Ross, A. H., and Exton, J. H., 1993, Purification of a 110-kDa phosphoinositide phospholipase C that is activated by G protein β-subunits, J. Biol. Chem. 268:25184–25191.

    PubMed  CAS  Google Scholar 

  • Bothmer, J., and Jolies, J., 1994, Phosphoinositide metabolism, aging and Alzheimer’s disease, Biochim. Biophys. Acta 1225:111–124.

    PubMed  CAS  Google Scholar 

  • Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphos-phate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Bio-chem. J. 212:733–747.

    CAS  Google Scholar 

  • Dawson, R. M. C., 1954, The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue, Biochim. Biophys. Acta 14:374–379.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., 1959, Studies on the enzymatic hydrolysis of monophosphoinositide by phospho-lipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77.

    Article  PubMed  CAS  Google Scholar 

  • del Rio, E., Nicholls, D. G., and Downes, C. P., 1994, Involvement of calcium influx in muscarinic cholinergic regulation of phospholipase C in cerebellar granule cells, J. Neurochem. 63:535–543.

    PubMed  Google Scholar 

  • Donie, F., and Reiser, G., 1991, Purification of a high-affinity inositol 1,3,4,5-tetrakisphosphate receptor from brain, Biochem. J. 275:453–457.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H., 1992, Auto-phosphorylation of inositol 1,4,5-P3 receptors, J. Biol. Chem. 267:7036–7041.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., Domask, L. M., and Roland, R. M., 1989, Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2+ requirements for phospholipase C activation, Mol. Pharmacol. 35:195–204.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., Heacock, A. M., and Agranoff, B.W., 1992, Inositol lipids and signal transduction in the nervous system: An update, J. Neurochem. 58:18–38.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J., 1949, Complete fractionation of brain cephalin: Isolation from it of phosphatidyl serine, phosphatidyl ethanolamine and diphosphoinositide, J. Biol. Chem. 177:497–504.

    PubMed  CAS  Google Scholar 

  • Fouchier, F., Baltz, T., and Rougon, G., 1990, Identification of glycosylphosphatidylinositol-specific phospholipases C in mouse brain membranes, Biochem. J. 269:321–327.

    PubMed  CAS  Google Scholar 

  • Fry, M. J., Panayotou, G., Dhand. R., Ruiz-Larrea, F., Gout, I., Nguyen, O., Courtneidge, S. A., and Waterfield, M. D., 1992. Purification and characterization of a phosphatidylinositol 3-ki-nase complex from bovine brain by using phosphopeptide affinity columns, Biochem. J. 288:383–393.

    PubMed  CAS  Google Scholar 

  • Gani, D., Downes, C. P., Batty, I., and Bramham, J., 1993, Lithium and myo-inositol homeostasis, Biochim. Biophys. Acta 1177:253–269.

    Article  PubMed  CAS  Google Scholar 

  • Gee, N. S., Ragan, C. I., Watling, K. J., Aspley, S., Jackson, R. G., Reid, G. G., Gani, D., and Shute, J. K., 1988, The purification and properties of myo-inositol monophosphatase from bovine brain, Biochem. J. 249:883–889.

    PubMed  CAS  Google Scholar 

  • Gusovsky, F., Yasumoto, T., and Daly, J. W., 1989, Calcium-dependent effects of maitotoxin on phosphoinositide breakdown and on cyclic AMP accumulation in PC 12 and NCB20 cells, Mol. Pharmacol. 36:44–53.

    PubMed  CAS  Google Scholar 

  • Hoener, M. C., Stieger, S., and Brodbeck, U., 1990, Isolation and characterization of a phosphatidylinositol glycan-anchor-specific phospholipase D from bovine brain, Eur. J. Biochem. 190:593–601.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, L. E., and Hokin, M. R., 1958, Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide, J. Biol. Chem. 233:818–821.

    PubMed  CAS  Google Scholar 

  • Houslay, M. D., 1991, Crosstalk: A pivotal role for protein kinase C in modulating relationships between signal transduction pathways, Eur. J. Biochem. 195:9–27.

    Article  PubMed  CAS  Google Scholar 

  • Hubscher, G., and Hawthorne, J. N., 1957, The isolation of inositol monophosphate from liver, Biochem. J. 67:523–527.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphos-phate pathway—demonstration of Ins 1,4,5-P3 3-kinase activity in animal tissues, Nature 320:631–634.

    Article  PubMed  CAS  Google Scholar 

  • Jhon, D.-Y., Lee, H.-H., Park, D., Lee, C.-W., Lee, K.-H., Yoo, O. J., and Rhee, S. G., 1993, Cloning, sequencing, purification of Gq-dependent activation of phospholipase Cβ3, J. Biol. Chem. 268:6654–6661.

    PubMed  CAS  Google Scholar 

  • Johanson, R. A., Hansen, C. A., and Williamson, J. R., 1988, Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain, J. Biiol. Chem. 263:7465–7471.

    CAS  Google Scholar 

  • Jope, R. S., and Williams, M. B., 1994, Lithium and brain signal transduction systems, Biochem. Pharmacol. 47:429–441.

    Article  PubMed  CAS  Google Scholar 

  • Kai, M., Salway, J. G., and Hawthorne, J. N., 1968, The diphosphoinositide kinase of rat brain, Biochem. J. 106:791–801.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Hubscher, G., and Hawthorne, J. N., 1959, A liver phospholipase hydrolysing phospho-inositides, Biochim. Biophys. Acta 31:585–586.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, P., Hubscher, G., and Hawthorne, J. N., 1961, Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200.

    PubMed  CAS  Google Scholar 

  • Klann, E., Chen, S., and Sweatt, J. D., 1993, Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate, Proc. Natl. Acad. Sci. U.S.A. 90:8337–8341.

    Article  PubMed  CAS  Google Scholar 

  • Klenk, E., and Hendricks, U. W., 1961, An inositol phosphatide containing carbohydrate, isolated from human brain, Biochim. Biophys. Acta 50:602–603.

    Article  PubMed  CAS  Google Scholar 

  • Litwack, E. D., Stipp, C. S., Kumbasar, A., and Lander, A. D., 1994, Neuronal expression of glypican, a cell-surface glycosylphosphatidylinositol-anchored heparan sulphate proteoglycan, in the adult rat nervous system, J. Neurosci. 14:3713–3724.

    PubMed  CAS  Google Scholar 

  • Low, M. G., 1987, Biochemistry of the glycosylphosphatidylinositol membrane protein anchors, Biochem. J. 224:1–13.

    Google Scholar 

  • Luckhoff, A., and Clapham, D. E., 1992, Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel, Nature 355:356–358.

    Article  PubMed  CAS  Google Scholar 

  • Mansson, J.-E., Rynmark, B.-M., and Svennerholm, L., 1991, A novel inositol-containing gly-cosphingolipid isolated from human peripheral nerve, FEBS Lett. 280:251–253.

    Article  PubMed  CAS  Google Scholar 

  • McConville, M. J., and Ferguson, M. A. J., 1993, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes, Biochem. J. 294:305–324.

    PubMed  CAS  Google Scholar 

  • Micheli, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.

    Google Scholar 

  • Mignery, G. A., Newton, C. L., Archer, B. T. III, and Sudhof, T. C., 1990, Structure and expression of the rat inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:12679–12685.

    PubMed  CAS  Google Scholar 

  • Minisclou, C., Rouquier, L., Benavides, J., Scatton, B., and Claustre, Y., 1994, Muscarinic receptor-mediated increases in extracellular inositol 1,4,5-trisphosphate levels in the rat hippocampus: An in vivo microdialysis study, J. Neurochem. 62:557–562.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334:661–665.

    Article  PubMed  CAS  Google Scholar 

  • Oda, T., Shearman, M. S., and Nishizuka, Y., 1991, Synaptosomal protein kinase C subspecies: Down-regulation promoted by phorbol ester and its effect on evoked norepinephrine release, J. Neurochem. 56:1263–1269.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S. G., 1991, Inositol phospholipid-specific phospholipase C: Interaction of the γ1 isoform with tyrosine kinase, Trends Biochem. Sci. 16:297–301.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S. G., and Choi, K. D., 1992, Regulation of inositol phospholipid-specific phospholipase C isozymes, J. Biol. Chem. 267:12393–12396.

    PubMed  CAS  Google Scholar 

  • Rhee, S. G., Suh, P.-G., Ryu, S.-H., and Lee, S. Y., 1989, Studies of inositol phospholipid-specific phospholipase C., Science 244:546–550.

    Article  PubMed  CAS  Google Scholar 

  • Salles, J., Wallace, M. A., and Fain, J. N., 1993, Modulation of the phospholipase C activity in rat brain cortical membranes by simultaneous activation of distinct monoaminergic and cholinergic muscarinic receptors, Mol. Brain Res. 20:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, M. S., Sekiguchi, K., and Nishizuka, Y., 1989, Modulation of ion channel activity: A key function of the protein kinase C enzyme family, Pharmacol. Rev. 41:211–237.

    PubMed  CAS  Google Scholar 

  • Shearman, M. S., Shinomura, T., Oda, T., and Nishizuka, Y., 1991, Synaptosomal protein kinase C subspecies: Dynamic changes in the hippocampus and cerebellar cortex concomitant with synap-togenesis, J. Neurochem. 56:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  • Shears, S. B., 1989, Metabolism of the inositol phosphates produced upon receptor activation, Biochem. J. 260:313–324.

    PubMed  CAS  Google Scholar 

  • Stokes, C. E., and Hawthorne, J. N., 1987, Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains, J. Neurochem. 48:1018–1021.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, C. E., Gillon, K. R. W., and Hawthorne, J. N., 1983, Free and total lipid myo-inositol concentrations decrease with age in human brain, Biochim. Biophys. Acta 753:136–138.

    PubMed  CAS  Google Scholar 

  • Varticovski, L., Harrison-Findik, D., Keeler, M. L., and Susa, M., 1994, Role of PI 3-kinase in mitogenesis, Biochim. Biophys. Acta 1226:1–11.

    PubMed  CAS  Google Scholar 

  • Wilcox, R. A., Whitham, E. M., Liu, C., Potter, B. V. L., and Nahorski, S. R., 1993, myo-Inositol 1,3,4,5-tetrakisphosphate can independently mobilize intracellular calcium, via the inositol 1,4,5-trisphosphate receptor: Studies with myo-inositol 1,4,5-trisphosphate 3-phosphorothioate and myo-inositol hexakisphosphate, FEBS Lett. 336:267–271.

    Article  PubMed  CAS  Google Scholar 

  • Wojcikiewicz, R. J. H., Furnichi, T., Nakada, S., Mikoshiba, K., and Nahorski, S. R., 1994, Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation, J. Biol. Chem. 269:7963–7969.

    PubMed  CAS  Google Scholar 

  • Wood, P. C., Wojcikiewicz, R. J. H., Burgess, J., Castledeu, C. M., and Nahorski, S. R., 1994, Aluminium inhibits muscarinic agonist-induced inositol 1,4,5-trisphosphate production and calcium mobilization in permeabilized SH-SY5Y human neuroblastoma cells, J. Neurochem. 62:2219–2223.

    Article  PubMed  CAS  Google Scholar 

  • Yagisawa, H., Hirata, M., Kanematsu, T., Watanabe, Y., Ozaki, S., Sakuma, K., Tanaka, H., Yabuta, N., Kamata, H., Hirata, H., and Nojima, H., 1994, Expression and characterization of an inositol 1,4,5-triphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1, J. Biol. Chem. 269:20179–20188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hawthorne, J.N. (1996). Phosphoinositides and Synaptic Transmission. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics