Skip to main content

TIMP-2 Mediates Cell Surface Binding of MMP-2

  • Chapter
Intracellular Protein Catabolism

Abstract

In order to understand the mechanism for neoplastic cell invasion, we utilized binding studies of TIMP-2, gelatinase A and the TIMP-2/gelatinase A complex to neoplastic cells and correlated these results with their capacity to invade a matrix substrate in a modified Boyden chamber assay. Binding studies were performed on malignant human breast cancer cells and fibrosarcoma cells with rTIMP-2, rGelatinase A, and TIMP-2/gelatinase Acomplex. Competition studies of the binding characteristics of these proteins indicated that gelatinase A and gelatinase A/TIMP-2 complex bound to the surface of cells via TIMP-2. Furthermore, the localization of either latent or active protease to the surface of MDA-MB-435 breast cancer cells facilitated the invasion of these neoplastic cells through a matrigel barrier. This suggests that in addition to binding this complex, these cells can activate this pro-enzyme-inhibitor complex and use this activity to facilitate cellular invasion. Moreover, their enhanced invasion was suppressed by exogenous additions of rTIMP-2. A working hypothesis and model for the role of gelatinase A/TIMP-2 complex in cellular invasion is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D. and Stetler-Stevenson, W. G., 1991, Tumor cell invasion inhibited by TIMP-2 [see comments], J. Natl. Cancer Inst. 83: 775–9.

    Article  PubMed  CAS  Google Scholar 

  • Barsky, S. J., Rao, C. N., Williams, J. E. and Liotta, L. A., 1984, Laminin molecular domains which alter metastsis in a murine model, J. Clin. Invest. 74: 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., Moore, W. G. L., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A., 1993, Matrix Metalloproteinases: A Review, Crit. Rev. Oral Biol. Med. 4: 197–250.

    PubMed  CAS  Google Scholar 

  • Brown, P. D., Bloxidge, R. E., Stuart, N. S. A., Gatter, K. C. and Carmichael, J., 1993, Association Between Expression of Activated 72-Kilodalton Gelatinase and Tumor Spread in Non-Small-Cell Lung Carcinoma, J. Natl. Cancer Inst. 85: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. D., Kleiner, D. E., Unsworth, E. J. and Stetler-Stevenson, W. G., 1993, Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex, Kidney Int. 43: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Campo, E., Merino, M. J., Liotta, L., Neumann, R. and Stetler-Stevenson, W., 1992, Distribution of the 72-kd type IV collagenase in nonneoplastic and neoplastic thyroid tissue, Hum Pathol 23: 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  • DeClerck, Y., Szpirer, C, Aly, M. S., Cassiman, J.-J., Eeckhout, Y. and Rousseau, G., 1992, The Gene for Tissue Inhibitor of Metalloproteinases-2 Is Localized on Human Chromosome Arm 17q25, Genomics 14:782–784.

    Article  CAS  Google Scholar 

  • DeClerck, Y. A., Yean, T.-D., Ratzkin, B. J., Lu, H. S. and Langley, K. E., 1989, Purification and Characterization of Two Related but Distinct Metalloproteinase Inhibitors Secreted by Bovine Aortic Endothelial Cells, J. Biol. Chem. 264: 17445–17453.

    CAS  Google Scholar 

  • DeClerck, Y. A., Yean, T. D., Lee, Y., Tomich, J. M. and Langley, K. E., 1993, Characterization of the Functional Domain of Tissue Inhibitor of Metalloproteinases-2 (TIMP-2), Biochem. J. 289: 65–69.

    PubMed  CAS  Google Scholar 

  • Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G. and Reynolds, J. J., 1985, Sequence of Human Tissue Inhibitor of Metalloproteinases and Its Identity to Erythroid-Potentiating Activity, Nature 318: 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Emonard, H. P., Remacle, A. G., No:el, A. C., Grimaud, J. A., Stetler-Stevenson, W. G. and Foidart, J. M., 1992, Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase. Cancer Res. 52: 5845–8.

    PubMed  CAS  Google Scholar 

  • Fridman, R., Fuerst, T. R., Bird, R. E., Hoyhtya, M., Oelkuct, M., Kraus, S., Komarek, D., Liotta. L. A., Bennan, M. L. and Stetler-Stevenson, W. G., 1992, Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions,J. Biol. Chem. 267: 15398–405.

    PubMed  CAS  Google Scholar 

  • Hewitt, R. E., Leach, I. H., Powe, D. G. Clark, I. M., Cawston, T. E. and Turner, D. R., 1991, Distribution of collagenase and tissue inhibitor of metalloproteinases (TIMP) in colorectal tumours. Int. J. Cancer 49: 666–672.

    Article  PubMed  CAS  Google Scholar 

  • Keskioja, J., Lohi, J., Tuuttila, A., Tryggvason, K. and Vartio, T., 1992, Proteolytic Processing of the 72,000-Da Type-IV Collagenase by Urokinase Plasminogen Activator, Exp. Cell Res/ 202: 471–476.

    Article  CAS  Google Scholar 

  • Kleiner, D., Jr., Tuuttila, A., Tryggvason, K. and Stetler-Stevenson, W. G., 1993, Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2), Biochemistry 32: 1583–92.

    Article  PubMed  CAS  Google Scholar 

  • Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P. and Edwards, D. R., 1994, Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) Is an Extracellular Matrix-associated Protein with a Distinctinve Pattern of Expression in Mouse Cells and Tissues, J. Biol. Chem. 269: 9352–9360.

    PubMed  CAS  Google Scholar 

  • Liotta, L. A. and Stetler-Stevenson, W. G., 1990, Metalloproteinases and cancer invasion, Cancer Biology 1: 99–106.

    CAS  Google Scholar 

  • Melchiori, A., Albini, A., Ray, J. M. and Stetler-Stevenson, W. G., 1992, Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment, Cancer Res. 52: 2353–6.

    PubMed  CAS  Google Scholar 

  • Muir, D., 1994, Metalloproteinase-Dependent Neurite outgrowth within a synthetic extracellular matrix is induced by nerve growth factor, Exp. Cell Res. 210: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O’Shea, M. and Docherty, A. J., 1991, The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity, Biochemistry 30: 8097–102.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D. and Docherty, A. J., 1992, The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases, Biochem. J. 283: 637–641.

    PubMed  CAS  Google Scholar 

  • Nomura, K. and Suzuki, N., 1993, Stereo-specific inhibition of sea urchin envelysin (hatching enzyme) by a synthetic autoinhibitor peptide with a cysteine-switch consensus sequence., FEBS Lett. 321: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea, M., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. and Murphy, G., 1992, Site-Directed Mutations That Alter the Inhibitory Activity of the Tissue Inhibitor of Metalloproteinases-1: Importance of the N-Terminal Region Between Cysteine 3 and Cysteine 13, Biochemistry 31: 10146–10152.

    Article  PubMed  Google Scholar 

  • Okada, Y., Morodomi, T., Enghild, J. J., Suzuki, K., Yasui, A., Nakanishi, I., Salvesen, G. and Nagase, H., 1990, Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties, Eur. J. Biochem. 194: 721–730.

    Article  PubMed  CAS  Google Scholar 

  • Park, A. J., Matrisian, L. M., Keils, A. F., Pearson, R., Yuan, Z. Y. and Navre, M., 1991, Mutational Analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the “cysteine switch”, J. Biol. Chem. 266: 1584–1590.

    PubMed  CAS  Google Scholar 

  • Pavloff, N., Staskus, P. W., Kishnani, N. S. and Hawkes, S. P., 1992, A New Inhibitor of Metalloproteinases from Chicken: ChIMP-3. A Third Member of the TIMP Family, J. Biol. Chem.261: 17321–17326.

    Google Scholar 

  • Rodbard, D., 1973, Mathematics of Horomonoe-receptor interaction. 1. Basic Principles, Adv. Exp. Med. Biol. 36: 289–326.

    PubMed  CAS  Google Scholar 

  • Salo, T., Liotta, L. A., Keski-Oja, J., Turpeennieme-Hujanen, T. and Tryggvason, K., 1982, Secretion of a Basement Membrane Collagen Degrading Enzyme and Plasminogen Activator by Transformed Cells-Role in Metastasis, Int. J. Cancer 30: 669–673.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R. and Werb, Z., 1993, Role of zinc-binding- and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins, J. Biol. Chem. 268: 7238–47.

    PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., Nicholson, R., Gesnel, M.-C, Matrisian, L. M. and Breathnach, R., 1988, Structure-Function Relationships in the Collagenase Gene Family Member Transin, J. Biol. Chem. 263:11892–11899.

    PubMed  CAS  Google Scholar 

  • Sato, H., Kida, Y, Mai, M., Endo, Y, Sasaki, T., Tanaka, J. and Seiki, M., 1992, Expression of genes encoding type IV collagen-degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells, Oncogene 7: 11–S3.

    Google Scholar 

  • Sato, H., Takahisa, T., Okada, Y, Cao, J., Shinagawa, A., Yamamoto, E. and Seiki, M., 1994, A matrix metalloproteinase expressed on the surface of invasive cells, Nature 370: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Bersch, N. and Golde, D. W., 1992, Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity, FEBS Lett. 296: 231–4.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Krutzsch, H. C. and Liotta, L. A., 1989, Tissue Inhibitor of Metalloproteinase (TIMP-2), J. Biol. Chem. 264: 17374–17378.

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Liotta, L. A. and Seidin, M. F., 1992, Linkage analysis demonstrates that the Timp-2 locus is on mouse chromosome 11, Genomics 14: 828–9.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Talano, J. A., Gallagher, M. E., Krutzsch, H. C. and Liotta, L. A., 1991, Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment, Amer. J. Med. Sci. 302: 163–70.

    Article  PubMed  CAS  Google Scholar 

  • Strongin, A. Y., Collier, I. E., Krasnov, P. A., Genrich, L. T., Maimer, B. L. and Goldberg, G. L., 1993, Human 92 kDa Type-IV Collagenase - Functional Analysis of Fibronectin and Carboxyl-End Domains, Kidney Int. 43: 158–162.

    Article  PubMed  CAS  Google Scholar 

  • Van Ward, H. and Birkedal-Hansen, H., 1990, The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc. Natl. Acad. Sci. USA 87: 5578–5582.

    Article  Google Scholar 

  • Ward, R. V., Atkinson, S. J., Slocombe, P. M., Docherty, A. J., Reynolds, J. J. and Murphy, G., 1991, Tissue inhibitor of metalloproteinases-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes, Biochim. Biophys. Acta. 1079: 242–6.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., Mainardi, C. L., Vater, C. and Harris, E. D., 1977, Endogenous Activation Of Latent Collagenase By Rheumatoid Synovial Cells. Evidence for a Role of Plasminogen Activator, New Engl. J. Med. 296: 1017–1023.

    CAS  Google Scholar 

  • Williamson, R., Marston, F., Angal, S., Koklitis, P., Panico, M., Morris, H., Carne, A., Smith, B., Harris, T. and Freedman, R., 1990, Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP), Biochem. J. 268: 267–274.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Corcoran, M.L., Emmert-Buck, M.R., McClanahan, J.L., Pelina-Parker, M., Stetler-Stevenson, W.G. (1996). TIMP-2 Mediates Cell Surface Binding of MMP-2. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics