Skip to main content

Abnormalities of the Endosomal-Lysomal System in Alzheimer’s disease

Relationship To Disease Pathogenesis

  • Chapter
Intracellular Protein Catabolism

Abstract

The lysosome is a major component of a dynamic and polymorphic system of acidic vacuolar compartments in the cell that is capable of degrading most large cellular molecules, i.e., nucleic acids, polysaccharides, proteins, and lipids, to low molecular weight products. As the major site of intracellular digestion, lysosomes contain dozens of hydrolytic enzymes that are housed within membrane-bound, low pH compartments (1, 2). The use of electron microscopy, enzyme and immunocytochemistry techniques have provided morphological criteria to identify lysosomes and to distinguish among different lysosomal stages and types. Lysosomal biogenesis begins within the endomembrane system of organelles. Synthesis and glycosylation take place in the endoplasmic reticulum followed by posttranslational modification and acquisition of phosphmannosyl residues within the Golgi apparatus. Mannose phosphate receptors interact with trans Golgi-derived coated vesicles containing nascent hydrolases and deliver these to acidic prelysosomal compartments, the late endosomes (3–5). The membrane-bound compartments that house both enzyme and the material to be digested are quite heterogeneous and include different morphological types of structures such as dense bodies, multivesicular bodies, and autophagic vacuoles. As digestion proceeds, a third type of lysosome-derived structure forms containing accumulating material that is resistant to degradation along with varying amounts of acid hydrolase activities. These residual granules, which are characterized by the color and autofluorescence of the accumulated material include lipofuscin, ceroid, and hemofuscin (1–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. deDuve, C, Pressman, B.C., Gianetti, R., Wattiawux, R., and Appelman, F., 1955, Tissue fractionation studies. Intracellular distribution patterns of enzymes in rat liver tissues, Biochem. J. 60:604–617.

    CAS  Google Scholar 

  2. deDuve, C. and Wattiaux, R., 1966, Functions of lysosomes, Annu. Rev. Physiol. 28:435–492.

    Article  CAS  Google Scholar 

  3. Dahms, N.M., Lobel, P., and Kornfeld, S., 1989, Mannose 6-phosphate receptors and lysosomal enzyme targeting, J. Biol. Chem. 264:12115–12118.

    PubMed  CAS  Google Scholar 

  4. Geuze, H. J., Stoorvogel, W., Strous, G. J., Slot, J.W., Zuderhand- Bleekemolen, J., and Mellman, I., 1988, Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles, J. Cell Biol. 107:2491–2501.

    Article  PubMed  CAS  Google Scholar 

  5. Kornfeld, S., and Mellman, I., 1989, The biogenesis of lysosomes, Annu. Rev. Cell Biol. 4:482–525.

    Google Scholar 

  6. Bowser, R. and Murphy, R.F., 1990, Kinetics of hydrolysis of endocytosed substrates by mammalian cultured cells: early introduction of lysosomal enzymes into the endocytic pathway, J. Cell Physiol. 143:110–117.

    Article  PubMed  CAS  Google Scholar 

  7. Diment, S., Leech, M.S., and Stahl, P.D., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263:6901–6907.

    PubMed  CAS  Google Scholar 

  8. Lemansky, P., Hasilik, A., VonFigura, K., Helmy, S., Fishman, J., Fine, R.E., Kerersha, N.L., and Rome, L.H., 1987, Lysosomal enzyme precursors in coated vesicles derived from the exocytic and endocytic pathways, J. Cell Biol. 104:1743–1748.

    Article  PubMed  CAS  Google Scholar 

  9. Rodman, J.S., Mercer, R. W., and Stahl, P.D., 1990, Endocytosis and transcytosis, Curr. Opin. Cell Biol. 2:664–672.

    Article  PubMed  CAS  Google Scholar 

  10. Erickson, A.H. and Blobel, G., 1983, Carboxyl-terminal proteolytic processing during biosynthesis of lysosomal enzymes beta-glucuronidase and cathepsin D, Biochemistry 22:52010–5205.

    Article  Google Scholar 

  11. Riederer, M.A., Soldati, T., Shapiro, A.D., Lin, J., and Pfeffer, S.R., 1994, Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network, J. Cell Biol. 125:573–582.

    Article  PubMed  CAS  Google Scholar 

  12. Cataldo, A.M., Thayer, C.Y., Bird, E.D., Wheelock, T.R., and Nixon, R.A., 1990, Lysosomal proteinase antigens are prominently localized within senile plaques of a Alzheimer’s disease: evidence for a neuronal origin, Brain Res. 513:181–192.

    Article  PubMed  CAS  Google Scholar 

  13. Cataldo, A.M., Paskevich, P.A., Kominami, E., and Nixon, R.A., 1991, Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 88:10998–11002.

    Article  PubMed  CAS  Google Scholar 

  14. Cataldo, A.M., Hamilton, D.J., and Nixon, R.A., 1994, Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer’s disease, Brain Res. 640:68–80.

    Article  PubMed  CAS  Google Scholar 

  15. Cataldo, A.M. and Nixon, R.A., 1990, Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer’s brain, Proc. Natl. Acad. Sci. USA 87:3861–3865.

    Article  PubMed  CAS  Google Scholar 

  16. Nixon, R.A., Cataldo, A.M., Paskevich, P.A., Hamilton, D.J., Wheelock, T.R., and Kanaley-Andrews, L., 1992, The lysosomal system in neurons: Involvement at multiple stages of Alzheimer’s disease pathogenesis, Ann. N. Y. Acad. Sci. 674:65.

    Article  PubMed  CAS  Google Scholar 

  17. Nixon, R.A., Cataldo, A.M., Mann, D.M.A., Paskevich, P.A., Hamilton, D.J., and Wheelock, T.R., 1993, Abnormalities of lysosomal proteolysis in neurons in Alzheimer’s disease and Down’s syndrome: possible relationship to ß-amyloid deposition, in Alzheimer’s Disease: Advances in Clinical and Basic Research B. Corain, K. Iqbal, K.M. Nicoline, B. Winblad, H. Wisniewski, and P. Zatta, Eds., John Wiley and Sons Ltd., New York, pp. 441–450.

    Google Scholar 

  18. Nixon, R.A. and Cataldo, A.M., 1991, Lysosomal proteolysis, in Frontiers of Alzheimer’s Research, T. Ishii, D. Allsop, and D. Selkoe, Eds. Elsevier, Amsterdam, pp. 133–146.

    Google Scholar 

  19. Nixon, R.A. and Cataldo, A.M., 1993, The lysosomal system in neuronal cell death: a review, in Markers of Neuronal Injury and Degeneration, J.N. Johannessen, Ed., Ann. N.Y. Acad. Sci. 679:87–109.

    Article  CAS  Google Scholar 

  20. Nixon, R.A., Cataldo, A.M., Hamilton, D.J., Barnett, J.L., and Paskevich., P.A., 1995, In preparation.

    Google Scholar 

  21. Cataldo, A.M., Barnett, J.L., Berman, S.A., Li, J., Quarless, S., Bursztajn, S., Lippa, C, and Nixon, R.A., 1995, Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: Evidence for early upregulation of the endosomal-lysosomal system. Neuron 14:1.

    Article  Google Scholar 

  22. Bernstein, H.G., Kirschke, H. Wiederanders, B., Khudoerkov, R.M., Hinz, W., and Rinne, A., 1992, Lysosomal proteinases as putative diagnostic tools in human neuropathology: Alzheimer’s disease (AD) and schizophrenia, Acta Histochem. Suppl. 42:19–24.

    CAS  Google Scholar 

  23. Schwagerl, A.L., Mohan, P.S., Cataldo, A.M., Vonsattel, J.P, Kowall, N.W., and Nixon, R.A., 1995, Elevated levels of the endosomal-lysosomal proteinase cathepsin D in Cerebrospinal fluid in Alzheimer’s disease, J. Neurochem. 64:443.

    Article  PubMed  CAS  Google Scholar 

  24. Diedrich, J.F., Minnigan, H., Carp, R.I., Whitaker, J.N., Race, R., Frey, W., 2d, and Haase, A.T., 1991, Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes, J. Virol. 65:4759–4768.

    PubMed  CAS  Google Scholar 

  25. Nakamura, Y., Takeda, M., Suzuki, H. Hattori, H., Tada, K., Hariguchi, S., Hashimoto, S., and Nishimura, T., 1991, Abnormal distribution of cathepains in the brain of patients with Alzheimer’s disease, Neurosci. Lett. 130:195–198.

    Article  PubMed  CAS  Google Scholar 

  26. Bernstein, H.G., Brusziz, S., Schmidt, D., Wiederanders, B., and Dorn, A., 1989, Immunodetection of cathepsin D in neuritic plaques found in brains of patients with dementia of Alzheimer type, J. Hirnforsch. 30:613–618.

    PubMed  CAS  Google Scholar 

  27. Kalaria, R.N., Golde, T., Kroon, S.N., and Perry, G., 1993, Serine protease inhibitor antithrombin III and its messenger RNA in the pathogenesis of Alzheimer’s disease, Am. J. Pathol. 143:886–893.

    PubMed  CAS  Google Scholar 

  28. Gollin, P.A., Kalaria, R.N., Eikelenboom, P., Rosemuller, A., and Perry, G., 1992, Alpha 1-antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer’s disease, Neuroreport 3:201–203.

    Article  PubMed  CAS  Google Scholar 

  29. Abraham, CR., Selkoe, D.J., and Potter, H., 1988, Immunochemical identification of the serine protease inhibitor alpha 1 -antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell 52:487–501.

    Article  PubMed  CAS  Google Scholar 

  30. Bernstein, H.G., Rinne, R., Kirschke, H., Jarvinen., M. Knofel. B., and Rinne, A., 1994, Cystatin A-like immunoreactivity is widely distributed in human brain and accumulates in neuritic plaques of Alzheimer’s disease subjects, Brain Res. Bull. 33:477.

    Article  PubMed  CAS  Google Scholar 

  31. Ii, K., Ito, H., Kominami, E., and Hirano, A., 1993, Abnormal distribution of cathepsin proteinases and endogenous inhibitors (cystatins) in the hippocampus of patients with Alzheimer’s disease, parkinsonism dementia complex on Guam and senile dementia and in the aged, Virchows Arch. A. Pathol. A nat. Histopathol. 423:185–194.

    Article  CAS  Google Scholar 

  32. Mullan, M. and Crawford, F., 1993, Genetic and molecular advance in Alzheimer’s disease. Trends Neurosci. 16:398–403.

    Article  PubMed  CAS  Google Scholar 

  33. Estus, S., Golde, T., and Younkin, S., 1992, Normal processing of the Alzheimer’s disease amyloid ß protein precursor generates potentially amyloidogenic carboxyl-terminal derivatives, Ann. N. Y. Acad. Sci. 674:138–148.

    Article  PubMed  CAS  Google Scholar 

  34. Neve, R.L., Kammesheidt, A., and Hohmann, C.F., 1992, Brain transplants of cells expressing the carboxyi terminal fragment of the Alzheimer amyloid protein precursor course specific neuropathology in vivo, Proc. Natl. Acad. Sci. USA 89:3448–3452.

    Article  PubMed  CAS  Google Scholar 

  35. Koo, E.H. and Squazzo, S.L., 1994, Evidence that production and release of amyloid ß-protein involves the endocytic pathway, J. Biol. Chem. 269:17386–17389.

    PubMed  CAS  Google Scholar 

  36. Buscaglio, J., Gabuzda, D.H., Matsudaira, P., and Yankner, B.A., 1993, Generation of beta-amyloid in the secretory pathways in neuronal and non-neuronal cells, Proc. Natl. Acad. Sci. USA 90:2090–2096.

    Google Scholar 

  37. Tagawa, K., Maruyama, K., and Ishiura, S., 1992, Amyloid ß/A4 procursor protein (APP) processing in lysosomes, Ann. N. Y. Acad. Sci. 674:129–137.

    Article  PubMed  CAS  Google Scholar 

  38. Ladror, U.S., Snyder, S.W., Wang., G.T., Holzman, T.F., and Krafft, G.A., 1994, Cleavage at the amino and carboxyi termini of Alzheimer’s amyloid-ß by cathepsin D, J. Biol. Chem. 269:18422–18428.

    PubMed  CAS  Google Scholar 

  39. Dreyer, R.N., Bausch, K.M., Fracasso, P., Hammond, L.J., Wunderlich, D., Wirak, D.O., Davis, G., Brini, CM., Buckholz, T.M., Konig, G., et al., 1994, Processing of the pre-beta-amyloid protein by cathepsin D is enhanced by a familial Alzheimer’s disease mutation, Eur. J. Biochem. 224:265–271.

    Article  PubMed  CAS  Google Scholar 

  40. Bosman, G.J., Bartholomeau, I.G.P., and DeGrip, W.J., 1991, Alzheimer’s disease and cellular aging: membrane-related events as clues to primary mechanisms, Gerontology 37:95–112.

    Article  PubMed  CAS  Google Scholar 

  41. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in the latest onset families, Science 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  42. Mahley, R.W., 1988, Apolipoprotein E: cholesterol transport protein with expanding role in cell biology, Science 240:622–630.

    Article  PubMed  CAS  Google Scholar 

  43. Matus, A. and Green, G.D.J., 1987, Age-related increase in a cathepsin D-like protease that degrades brain microtubule-associated proteins, Biochemistry 26:8083–8086.

    Article  PubMed  CAS  Google Scholar 

  44. Banay-Schwartz, M., DeGuzman, T., Kenessey, A., Palkovits, M., and Lajtha, A., 1992, The distribution of cathepsin D activity in adult and aging human brain regions, J. Neurochem. 58:2207–2211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Cataldo, A.M., Hamilton, D.J., Barnett, J.L., Paskevich, P.A., Nixon, R.A. (1996). Abnormalities of the Endosomal-Lysomal System in Alzheimer’s disease. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics