Skip to main content

Mechanisms and Regulation of Ubiquitin-Mediated Cyclin Degredation

  • Chapter
Intracellular Protein Catabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 389))

Abstract

We have been studying the biochemical mechanisms of intracellular protein degradation in an ATP-dependent proteolytic system from reticulocytes. Our studies led to the identification of a pathway mediated by ubiquitin (Ub), a highly conserved 76-amino acid residue polypeptide. We found that proteins are committed to degradation by their covalent ligation to Ub. We have also identified several enzymatic reactions in the formation and breakdown of Ub-protein conjugates. Currently available information on the enzymatic reactions of the Ub proteolytic pathway is reviewed in refs. 1–3 and is summarized in Fig. 1. The initial reaction is the activation of the C-terminal Gly residue of Ub by a specific enzyme, E1 (Step 1). Next, activated Ub is further transferred by transacylation to thiol groups of a family of Ub-carrier proteins, E2s (Step 2). Multiple species of E2 were observed in reticulocytes (4) and yeasts (5). Some species of E2 may transfer Ub directly to certain proteins, such as histones (Step 3). In most cases leading to protein degradation, the ligation of Ub to specific proteins requires a third enzyme, E3. The Ub-protein ligase E3 binds suitable substrates (ref. 6, Step 4) and an E2 (7), and thus allows the transfer of Ub from E2 to the protein substrate. Two species of E3, called E3αand E3ß, have been isolated from reticulocytes. E3α binds proteins with basic or hydrophobic N-terminal amino acid residues (8, 9), while E3ß mainly acts on proteins with small, uncharged amino acid residues at the N-terminal position (10). In the ligation process, isopeptide bonds are formed between the C-terminal Gly residue of Ub end ε-amino groups of Lys residues of proteins. In all cases of E3-dependent ligation and in some E3-independent reactions, multiple Ub units are linked to proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hershko, A., and Ciechanover, A. (1992). The Ubiquitin System for Protein Degradation.Annu. Rev. Biochem.61,761–807.

    Article  PubMed  CAS  Google Scholar 

  2. Finley, D. and Chau, V. (1991). Ubiquitination. Annu. Rev. Cell Biol. 7, 25–69.

    Article  PubMed  CAS  Google Scholar 

  3. Rechsteiner, M. (1993). The Multicatalytic and 26S Proteases. J. Biol. Chem. 268, 6065–6068.

    PubMed  CAS  Google Scholar 

  4. Pickart, CM. and Rose, I.A. (1985). Functional Heterogeneity of Ubiquitin Carrier Proteins. J. Biol. Chem. 260, 1573–1581.

    PubMed  CAS  Google Scholar 

  5. Jentsch, S. (1992). The Ubiquitin-Conjugation System. Annu. Rev. Genet. 26, 179–207.

    Article  PubMed  CAS  Google Scholar 

  6. Hershko, A., Heller, H. Eytan, E. and Reiss, Y. (1986). The Protein Substrate Binding Site of the Ubiquitin-Protein Ligase System. J. Biol. Chem. 261, 11992–11999.

    PubMed  CAS  Google Scholar 

  7. Reiss, Y, Heller, H. and Hershko, A., (1989). Binding Sites of Ubiquitin-Protein Conjugates and of Ubiquitin-Carrier Protein. J. Biol. Chem. 264, 10378–10383.

    PubMed  CAS  Google Scholar 

  8. Reiss, Y, Kaim, D. and Hershko, A., (1988). Specificity of Binding of NH2-terminal Residue of Proteins to Ubiquitin-Protein Ligase: Use of Amino Acid Derivatives to Characterize Specific Binding Sites. J. Biol. Chem. 263, 2693–2698.

    PubMed  CAS  Google Scholar 

  9. Reiss, Y and Hershko, A. (1990). Affinity Purification of Ubiquitin-Protein Ligase on Immobilized Protein Substrates: Evidence for the Existence of Separate NH2-Terminal Binding Sites on a Single Enzyme. J. Biol. Chem. 265, 3685–3690.

    PubMed  CAS  Google Scholar 

  10. Heller, H. and Hershko, A., (1990). A Ubiquitin-Protein Ligase Specific for Type III Protein Substrates. J. Biol. Chem. 265, 6532–6535.

    PubMed  CAS  Google Scholar 

  11. Hershko, A., and Heller, H. (1985). Occurrence of a Polyubiquitin Structure in Ubiquitin-Protein Conjugates. Biochem. Biophys. Res. Commun. 128, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  12. Chau, V, Tobias, J. W., Bachmair, A., Mariott, D., Ecker, D., Gonda, D.K. and Varshavsky, A. (1989). A Multiubiquitin Chain is Confined to a Specific Lysine in a Targeted Short-lived Protein. Science, 243, 1576–1583.

    Article  PubMed  CAS  Google Scholar 

  13. Hough, R., Pratt, G. and Rechsteiner, M. (1987). Purification of Two High Molecular Weight Proteases from Rabbit Reticulocyte Lysate. J. Biol. Chem. 262. 8308–8313.

    Google Scholar 

  14. Ganoth, D., Leshinsky, E., Eytan, E. and Hershko, A. (1988). A Multicomponent System that Degrades Proteins Conjugated to Ubiquitin: Resolution of Factors and Evidence for ATP-Dependent Complex Formation. J. Biol. Chem. 263, 12412–12419.

    PubMed  CAS  Google Scholar 

  15. Eytan, E., Ganoth, D., Armon, T. and Hershko, A., (1989). ATP-Dependent Incorporation of 20S Protease Into the 26S Complex that Degrades Proteins Conjugated to Ubiquitin. Proc. Natl. Acad Sci. USA. 86, 7751–7755.

    Article  CAS  Google Scholar 

  16. Deleted.

    Google Scholar 

  17. Armon, T., Ganoth, D. and Hershko, A., (1990). Assembly of the 26S Complex That Degrades Proteins Ligated to Ubiquitin is Accompanied by the Formation of ATPase Activity. J. Biol. Chem. 265, 20723–20726.

    PubMed  CAS  Google Scholar 

  18. Shanklin, J., Jabben, M., and Vierstra, R.D. (1987). Red Light-Induced Formation of Ubiquitin-Phyto-chrome Conjugates: Identification of Possible Intermediates of Phytochrome Degradation. Proc. Natl. Acad Sci. USA 84,359–363.

    Article  PubMed  CAS  Google Scholar 

  19. Hochstrasser, M., Ellison, M.J., Chau, V. and Varshavsky, A. (1991). The Short-lived MATα2 Transcriptional Regulator is Ubiquitinated In Vivo. Proc. Natl. Acad Sci. USA, 88, 4606–4610.

    Article  PubMed  CAS  Google Scholar 

  20. Palombella, V.J., Rando, O.J., Goldberg, A. L. and Maniatis, T. (1994). The Ubiquitin-Proteasome Pathway is Required for the Processing of NF-kB Precursor Protein and the Activation of NF-kB. Cell. 78, 773–785.

    Article  PubMed  CAS  Google Scholar 

  21. Michalek, M., Grant, E., Gramm, C, Goldberg, A.L. and Rock, K. (1993). A Role for Ubiquitin-dependent Proteolytic Pathway in MHC class-I-restricted Antigen Presentation. Nature. 363, 552–554.

    Article  PubMed  CAS  Google Scholar 

  22. Scheffner, M., Huigbretze, J.M., Vierstra, R.D. and Howley, P. (1993). The HPV-16 E6 and E6-AP Complex Functions as a Ubiquitin-Protein Ligase in the Ubiquitination of p53. Cell,15, 495–505.

    Article  Google Scholar 

  23. Ciechanover, A., Di Giuseppe, J.A., Bercovitch, B., Orian, A., Richter, J.D., Schwartz, A.L. and Brodner, G.M. (1991). Degradation of Oncoproteins by the Ubiquitin System In Vitro. Proc. Natl. Acad Sci. USA 88, 139–143.

    Article  PubMed  CAS  Google Scholar 

  24. Treier, M., Staszerwski, L.M. and Bohmann, D. (1994) Ubiquitin-Dependent c-jun Degradation In Vivo is Mediated by the δ Domain. Cell. 78, 787–798.

    Article  PubMed  CAS  Google Scholar 

  25. Nishisawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y. and Sagata, N. (1993). Degradation of Mos by the N-terminal Proline (Pro2)-dependent Ubiquitin Pathway on Fertilization of Xenopus Eggs: Possible Significance of Natural Selection for Pro2 in Mos. EMBO J. 12, 4021–4027.

    Google Scholar 

  26. Glotzer, M., Murray, A.W. and Kirschner M.W. (1991). Cyclin is Degraded by the Ubiquitin Pathway. Nature, 349, 132–138.

    Article  PubMed  CAS  Google Scholar 

  27. Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R.E. and Cohen, L.H. (1991). Methylated Ubiquitin Inhibits Cyclin Degradation in Clam Embryo Extracts. J. Biol. Chem. 266 16376–116379.

    PubMed  CAS  Google Scholar 

  28. Schwöb, E., B_hm, T., Mendenhall, M.D. and Nasmyth K. (1994). The B-type cyclin Kinase Inhibitor p40sicl Controls the Gl to S Transition in S cerevisiae. Cell. 79, 233–244.

    Article  PubMed  Google Scholar 

  29. Bachmair, A., Finley, D., and Varshavsky, A. (1986). In Vivo Half-Life of a Protein is a Function of its Amino-terminal Residue. Science. 234, 179–186.

    Article  PubMed  CAS  Google Scholar 

  30. Barbel, B., Wunning, I. and Varshavsky, A. (1990). The Recognition Component of the N-End Rule Pathway. EMBO J. 9, 3179–3189.

    Google Scholar 

  31. Norbury C. and Nurse, P. (1992). Animal Cell Cycles and their Control. Annu. Rev. Biochem. 61,441–470.

    Article  PubMed  CAS  Google Scholar 

  32. King, W.R., Jackson, P.K. and Kirschner, M.W. (1994). Mitosis in Transition. Cell, 79, 563–571.

    Article  PubMed  CAS  Google Scholar 

  33. Murry, A.W., Solomon, M.J. and Kirschner, M.W. (1989). The Role of Cyclin Synthesis and Degradation in the Control of Maturation Promoting Activity. Nature, 339, 280–286.

    Article  Google Scholar 

  34. Luca, F.C. and Ruderman, J.V (1989). Control of Programmed Cyclin Destruction in a Cell-Free System. J. Biol. Chem. 109, 1895–1909.

    CAS  Google Scholar 

  35. Luca, EC, Shibuya, E.K., Dohrmann, CD. and Ruderman, J.V. (1991). Both Cyclin AΔ60 and BΔ97 are Stable and Arrest Cells at the M-phase, but only Cyclin BΔ97 Turns on Cyclin Destruction. EMBO J. 10, 4311–4320.

    PubMed  CAS  Google Scholar 

  36. Felix, M.A., Labbe, J.C., Doree, M., Hunt, T. and Karsenti, E. (1990). Triggering of Cyclin Degradation in Interphase Extracts of Amphibian Eggs by Cdc2 Kinase. Nature, 346, 379–382.

    Article  PubMed  CAS  Google Scholar 

  37. Hershko, A., Ganoth, D., Sudakin, V, Cohen, L.H., Luca, F.C, Ruderman, J.V and Eytan, E. (1994). Components of a System that Ligates Cyclin to Ubiquitin and Their Regulation by Protein Kinase Cdc2. J. Biol. Chem. 269, 4940–4946.

    PubMed  CAS  Google Scholar 

  38. Sudakin, V, Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F.C, Ruderman, J.V. and Hershko, A. (1995). The Cyclosome, a Large Complex Containing Cyclin-Selective Ubiquitin Ligase Activity, Targets Cyclins for Destruction at the End of Mitosis. Mol. Biol. Cell , in press.

    Google Scholar 

  39. Lorca, T., Fesquet, D., Zindy, F., LeBouffant, F., Cerutti, M., Brechot, C, Devauchelle, G. and Doree, M. (1991). An Okadaic Acid-sensitive Phosphatase Negatively Controls the Cyclin Degradation Pathway in Amphibian Eggs. Mol. Cell Biol. 11, 1171–1175.

    PubMed  CAS  Google Scholar 

  40. Cohen, P., Holmes, C.F.B, and Tsukitani, Y. (1990). Okadaic acid: a New Probe for the Study of Cellular Regulation. Trends Biochem. Sci. 15, 98–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hershko, A. (1996). Mechanisms and Regulation of Ubiquitin-Mediated Cyclin Degredation. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics