Skip to main content

The Proteasome and Protein Degradation in Yeast

  • Chapter
Intracellular Protein Catabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 389))

Abstract

In 1984 a high molecular mass multisubunit protease complex was isolated from Saccharomyces cerevisiae [Achstetter et al. 1984] which proved to be the yeast homologue of the 20S proteasome complexes found in all eukaryotic cells [Kleinschmidt et al. 1988]. The yeast 20S proteasome is able to cleave chromo- and fluorogenic peptides at the carboxyterminus of hydrophobic, basic or acidic amino acids (chymotrypsin-like-, trypsin-like- and peptidyl-glutamyl-peptide hydrolyzing activity, respectively) [Heinemeyer et al. 1991]. The yeast 20S proteasome is composed of different subunits, showing a set of protein bands in the SDS-PAGE with molecular masses ranging from 20 to 35 kDa. They can be separated into 14 protein spots after two-dimensional gel electrophoresis [Heinemeyer et al. 1991]. Genes named Y7, Y13, PRS1 and PRS2 (independendly cloned as Y8 and SCL1) were cloned and sequenced on the basis of protein sequences of 20S proteasome subunits, genes named PRS3, PUP1, PUP2 and PUP3 were sequenced by chance [for summary see Hilt et al. 1993b]. We cloned the ß-type genes PREI, PRE2, PRE3 and PRE4 by complementation of mutants defective in the chymotrypsin-like- (prel and pre2 mutants) or the PGPH-activity (pre3 and pre4 mutants) of the proteasome [Heinemeyer et al. 1991, Heinemeyer et al. 1993, Hilt et al. 1993a, Enenkel et al. 1994]. Additionally we cloned two α-type genes PRE5 and PRE6 using peptide sequences derived from purified proteasome subunits, extending the number of yeast 20S proteasome subunit genes to 14 [Heinemeyer et al. 1994].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T, Ehmann, C, Osaki, A. and Wolf, D.H. 1984 Proteinase yscE, a new yeast peptidase J. Biol. Chem. 259:13344–13348.

    PubMed  CAS  Google Scholar 

  • Chen, P., Jentsch, S. and Hochstrasser, M. 1993 Multiple ubiquitin-conjugating enzymes Cell 74:357–369

    Google Scholar 

  • Egner, R., Thumm, M., Straub, M., Simeon, A., Schuller, H.J. and Wolf, D.H. 1993 Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae J. Biol. Chem. 268:27269–27276.

    PubMed  CAS  Google Scholar 

  • Enenkel, C, Lehmann, H., Kipper, J., Guckel, R., Hilt, W. and Wolf, D.H. 1994 PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING 12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity FEBS Lett. 341:193–196.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, M., Hilt, W., Richter-Ruoff, B., Gonen, H., Ciechanover, A., and Wolf, D.H. 1994 The 26S Proteasome of the yeast Saccharomyces cerevisiae FEBS Lett. 355:69–75.

    Article  PubMed  CAS  Google Scholar 

  • Glotzer, M., Murray, A.W. and Kirschner, M.W. 1991 Cyclin is degraded by the ubiquitin pathway Nature 349:132–138.

    CAS  Google Scholar 

  • Heinemeyer, W., Tröndle, N., Albrecht, G. and Wolf, D.H. 1994 PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core Biochemistry 33:12229–12237.

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer, W., Gruhler, A., Möhrle, V, Mahe, Y. and Wolf, D.H. 1993 PRE2, highly homologous to the human major histocompatibility complex-linked RING 10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins.J. Biol. Chem. 268:5115–5120.

    CAS  Google Scholar 

  • Heinemeyer, W., Kleinschmidt, J.A., Saidowsky, J., Escher, C. and Wolf, D.H. 1991 Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival EMBO J. 10:555–562.

    PubMed  CAS  Google Scholar 

  • Hilt, W., Enenkel, C, Gruhler, A., Singer, T. and Wolf, D.H. 1993a The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity - mutations link the proteasome to stress-dependent and ubiquitin-dependent proteolysis J. Biol. Chem. 268:3479–3486.

    CAS  Google Scholar 

  • Hilt, W., Heinemeyer, W. and Wolf, D.H. 1993b Studies on the yeast proteasome uncover its basic structural features and multiple in vivo functions Enyzme Protein 47:189–201.

    CAS  Google Scholar 

  • Hilt, W. and Wolf, D.H. 1992 Stress-induced proteolysis in yeast Molecular Microbiology 6:2437–2442.

    CAS  Google Scholar 

  • Hochstrasser, M. and Varshavsky, A. 1990 In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor Cell 61:697–708.

    Article  PubMed  CAS  Google Scholar 

  • Hough, R., Pratt, G. and Rechsteiner, M. 1986 Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates J. Biol. Chem. 261:2400–2408.

    CAS  Google Scholar 

  • Johnson, E.S., Bartel, B., Seufert, W, and Varshavsky, A. 1992 Ubiquitin as a degradation signal EMBO J. 11:497–505.

    CAS  Google Scholar 

  • Kleinschmidt, J.A., Escher, C. and Wolf, D.H. 1988 Proteinase yscE of yeast shows homology with the 20 S cylinder particles of Xenopus laevis FEBS Lett. 239:35–40.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, F., Dahlmann, B. and Hendil, K.B. 1993 Evidence indicating that the human proteasome is a complex dimer J. Mol. Biol. 229:14–19.

    Article  CAS  Google Scholar 

  • Nasmyth, K. 1993 Control of the yeast cell cycle by the Cdc28 protein kinase Curr. Opin. Cell. Biol. 5:166–179.

    Article  CAS  Google Scholar 

  • Peters, J.M., Cejka, Z., Harris, J.R., Kleinschmidt, J.A. and Baumeister, W. 1993 Structural Features of the 26S Proteasome Complex J. Mol. Biol. 234:932–937.

    Article  CAS  Google Scholar 

  • Pühler, G., Weinkauf, S., Bachmann, L., Müller, S., Engel, A., Hegerl, R. and Baumeister, W. 1992 Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum EMBO J. 11:1607–1616.

    Google Scholar 

  • Richter-Ruoff, B., Wolf, D.H. and Hochstrasser M. 1994 Degradation of yeast MATα2 transcriptional regulator is indicated by the proteasome FEBS Lett. 354:50–52.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Ruoff, B. and Wolf, D.H. 1993 Proteasome and cell cycle. Evidence for a regulatory role of the protease on mitotic cyclins in yeast FEBS Lett. 336:34–36.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Ruoff, B., Heinemeyer, W. and Wolf D.H. 1992 The proteasome/ multicatalytic-multifunctional proteinase. In vivo function in the ubiquitin-dependent N-end rule pathway of protein degradation in eukaryotes FEBS Lett. 302:192–196.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, T.M., Nesper, M., Kehl, M., Lottspeich, F., Mllertaubenberger, A. Gerisch, G. and Baumeister, W. 1993 Proteasomes from Dictyostelium discoideum - Characterization of structure and function J. Struct. Biol. 111:135–147.

    Article  CAS  Google Scholar 

  • Schork, S.M., Bee, G., Thumm, M. and Wolf, D.H. 1994 Site of catabolite inactivation Nature 369:283–284.

    CAS  Google Scholar 

  • Seufert, W. and Jentsch, S. 1992 In vivo function of the proteasome in the ubiquitin pathway EMBO J. 11:3077–3080.

    PubMed  CAS  Google Scholar 

  • Surana, U., Amon, A., Dowzer, C, McGrew, J., Byers, B. and Nasmyth, K. 1993 Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast EMBO J. 12:1969–1978.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Tamura, T., Kumatori, A., Kwak, T.H., Chung, C.H., Ichihara, A. 1989 Separation of yeast proteasome subunits. Immunoreactivity with antibodies against ATP-dependent protease Ti from Escherichia coli Biochem. Biophys. Res. Commun. 164:1253–1261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hilt, W., Heinemeyer, W., Wolf, D.H. (1996). The Proteasome and Protein Degradation in Yeast. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics