Participation of Cathepsins B, H, and L in Perikaryal Condensation of CA1 Pyramidal Neurons Undergoing Apoptosis After Brief Ischemia

  • T. Nitatori
  • N. Sato
  • E. Kominami
  • Y. Uchiyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 389)


The CA1 pyramidal neurons in the hippocampus are known to be selectively vulnerable to brief ischemia of the global cerebrum, resulting in delayed neuronal death several days after ischemic insult (Ito et al., 1975; Pulsinellie et al., 1979;Kirino, 1982;Kirino andSano, 1984a, b; Petito et al., 1987;Bonnekoh et al., 1990). It remains, however, unknown whether this delayed neuronal death is necrosis or apoptosis. According to the morphological criteria of apoptosis, dying cells show chromatin condensation and cell shrinkage, followed by heterophagocytosis (Kerr et al, 1987; Clarke, 1990). In the course of the study of the delayed death of the CA1 pyramidal neurons after transient ischemia, we noticed that shrinkage of these neurons suddenly occurs 3 or 4 days after ischemic insult. This suggests the possibility that delayed death of the CA1 pyramidal neurons after brief ischemia is not necrotic but apoptotic.


Pyramidal Neuron Cysteine Proteinase Ischemic Insult Autophagic Vacuole Immunogold Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bando, Y., Kominami, E., and Katunuma, N., 1986, Purification and tissue distribution of rat cathepsin L, J. Biochem. 100:35–42.PubMedGoogle Scholar
  2. Bendayan, M., 1982, Double immunocytochemical labelling applying the protein A-gold technique, J. Histochem. Cytochem. 30: 81–85.PubMedCrossRefGoogle Scholar
  3. Bernstein, H.-G., Kirschke, H., Roskoden, T, and Wiederanders, B., 1990, Distribution of cathepsin L in rat brain as revealed by immunohistochemistry, Acta Histochem. Cytochem. 23: 203–207.CrossRefGoogle Scholar
  4. Bernstein, H.-G., Sormunen, R., Järvinen, M., Kloss, P., Kirschke, H., and Rinne, A., 1989, Cathepsin B immunoreactive neurons in rat brain. A combined light and electron microscopic study, J. Hirnforsch. 30: 313–317.PubMedGoogle Scholar
  5. Bonnekoh, P., Barbier, A., Oschlies, U., and Hossmann, K.-A., 1990, Selective vulnerability in the gerbil hippocampus: Morphological changes after 5-min ischemia and long survival times, Acta Neuropathol. (Bed.) 80: 18–25.PubMedCrossRefGoogle Scholar
  6. Cataldo, A.M. and Nixon, R.A., 1990, Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain, Proc. Natl. Acad. Sci. USA 87: 3861–3865.PubMedCrossRefGoogle Scholar
  7. Cataldo, A.M., Paskevich, P.A., Kominami, E. and Nixon R. A., 1991, Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 88: 10998–11002.PubMedCrossRefGoogle Scholar
  8. Cataldo, A.M., Thayer C.Y., Bird, E.D., Wheelock, T.R. and Nixon, R.A., 1990, Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: evidence for a neuronal origin, Brain Res. 513: 181–192.PubMedCrossRefGoogle Scholar
  9. Clarke, P. G. H., 1990, Developmental cell death: morphological diversity and multiple mechanisms, Anat. Embryol. 181: 195–213.PubMedCrossRefGoogle Scholar
  10. Deckwerth, T. L., and Johnson, E. M. Jr., 1993, Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor, J. Cell Biol. 123: 1207–1222.PubMedCrossRefGoogle Scholar
  11. Gavrieli, Y., Sherman, Y., and Ben-Sasson, A. J., 1992, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol. 119: 493–501.PubMedCrossRefGoogle Scholar
  12. Haas, A. and Bright, P.M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260: 12464–12473.PubMedGoogle Scholar
  13. Ishii, Y., Hashizume, Y., Watanabe, T., Waguri, S., Sato, N., Yamamoto, M., Hasegawa, S., Kominami, E., and Uchiyama, Y., 1991, Cysteine proteinases in bronchoalveolar epithelial cells and lavage fluid of rat lung, J. Histochem. Cytochem. 39: 461–468.PubMedCrossRefGoogle Scholar
  14. Ito, U., Spatz, M., Walker, J. T., and Klatzo, I., 1975, Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol. (Bed.) 32: 209–223.PubMedCrossRefGoogle Scholar
  15. Katunuma, N., and Kominami, E., 1983, Structures and functions of lysosomal thiol proteinases and their endogenous inhibitors, Curr. Top. Cell Regul. 22: 71–101.PubMedGoogle Scholar
  16. Kerr, J. F. R., Searle, J., Harmon, B. V., and Bishop, C. J., 1987, Apoptosis. In: Perspectives on mammalian cell death (Potten CS ed), pp 93–128. Oxford: Oxford University Press.Google Scholar
  17. Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239: 57–69.PubMedCrossRefGoogle Scholar
  18. Kirino, T., and Sano, K., 1984a, Selective vulnerability in the gerbil hippocampus following transient ischemia, Acta Neuropathol. (Berl.) 62: 201–208.PubMedCrossRefGoogle Scholar
  19. Kirino, T., and Sano, K., 1984b, Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus, Acta Neuropathol. (Berl.) 62: 209–218.PubMedCrossRefGoogle Scholar
  20. Kirschke, H., Langer, J., Riemann, S., Wiederanders, B., Ansorge, S., and Bohley, P., 1980, Lysosomal cysteine proteinases. In Protein degradation in health and disease (Evered D, Whelan J eds), Ciba Foundation Symposium 75, pp 15–35. Amsterdam: Excerpta Medica.Google Scholar
  21. Kominami, E., Bando, Y., Wakamatsu, N., and Katunuma, N., 1984, Different tissue distributions of two types of thiol proteinase inhibitors from rat liver and epidermis, J. Biochem. 96: 1437–1442.PubMedGoogle Scholar
  22. Kominami, E., Tsukahara, T., Bando, Y., and Katunuma, N., 1985, Distribution of cathepsins B and H in rat tissues and peripheral blood cells, J. Biochem. 98: 87–93.PubMedGoogle Scholar
  23. Petito, C. K., Feldmann, E., Pulsinelli, W. A., and Plum, F., 1987, Delayed hippocampal damage in human following cardiorespiratory arrest, Neurology 37: 1281–1286.PubMedGoogle Scholar
  24. Pulsinelli, W. A., and Brierley, J. B., 1979, A new model of bilateral hemispheric ischemia in the unanesthetized rat, Stroke 10: 267–272.PubMedCrossRefGoogle Scholar
  25. Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Habor Press, B.20, E.2.Google Scholar
  26. Takio, K., Kominami, E., Wakamatsu, N., Katunuma, and Titani, K., 1983, Amino acid sequence of rat liver thiol proteinase inhibitor, Biochem. Biophys. Res. Commun. 115: 902–908.PubMedCrossRefGoogle Scholar
  27. Taniguchi, K., Tomita, M., Kominami, E., and Uchiyama, Y., 1993, Cysteine proteinases in rat dorsal root ganglion and spinal cord, with special reference to the co-localization of these enzymes with calcitonin gene-related peptide (CGRP) in lysosomes, Brain Res. 601: 143–153.PubMedCrossRefGoogle Scholar
  28. Thilmann, R., Xie, Y., Kleihues, P., and Kiessling, M., 1986, Persistent inhibition of protein synthesis precede delayed neuronal death in postischemic gerbil hippocampus, Acta Neuropathol. (Berl.) 71: 88–93.PubMedCrossRefGoogle Scholar
  29. Uchiyama, Y., Nakajima, M., Muno, D., Watanabe, T., Ishii, Y., Waguri, S., Sato, N., and Kominami, E., 1990, Immunocytochemical localization of cathepsins B and H in corticotrophs and melanotrophs of rat pituitary gland, J. Histochem. Cytochem. 38: 633–639.PubMedCrossRefGoogle Scholar
  30. Ueno, T. and Kominami, E., 1991, Mechanism and regulation of lysosomal sequestration and proteolysis, Biomed. Biochem. Acta 50: 365–371.Google Scholar
  31. Watanabe, M., Watanabe, T., Ishii, Y., Matsuba, H., Kimura, S., Fujita, T., Kominami, E., Katunuma, N., and Uchiyama, Y., 1988, Immunohistochemical localization of cathepsins B, H, and their endogenous inhibitor, cystatin b, in islet endocrine cells of rat pancreas, J. Histochem. Cytochem. 36: 783–791.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • T. Nitatori
    • 1
  • N. Sato
    • 2
  • E. Kominami
    • 3
  • Y. Uchiyama
    • 2
  1. 1.Department of Cell Biology and NeuroanatmyIwata Medical School University of MedicineMoriokaJapan
  2. 2.Department of Anantomy 1Osaka University School of MedicineOsakaJapan
  3. 3.Department of BiochemistryJuntendo University School of MedicineTokyoJapan

Personalised recommendations