Skip to main content

Alpha-Mercaptoacrylic Acid Derivatives as Novel Selective Calpain Inhibitors

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 389))

Abstract

Calpain is a family of cytosolic cysteine proteases activated by calcium (1–5). There are two major isoforms, µ- and m-calpain, requiring low and high micromolar calcium for in vitro activity, respectively. Both µ- and m-calpain have a large catalytic subunit (80 kDa) and a small regulatory subunit (29 kDa). Both subunits contain EF-hand calcium-binding structures which control the proteolytic activity of the enzyme. Calpains are implicated in a number of pathological conditions, including stroke, myocardial ischemia and cataract, where intracellular calcium levels are elevated markedly (6). In cerebral ischemia, synaptic glutamate (excitotoxin) buildup leads to excessive activation of ionotropic N-methyl-D-aspartate NMDA- and AMPA/kainate-receptors (7–8). The resultant calcium influx triggers calpain activation. Calpain then degrades cytoskeletal proteins which leads to the loss of cell integrity and cell death (9). Several peptide calpain inhibitors (e.g., calpain inhibitor I (acetyl-Leu-Leu-Nle-H) and MDL28170 (carbobenzoxy-Val-Phe-H)) were found to have neuroprotective effects in various models of excitotoxicity and/or ischemia (10-12). However, these agents are nonselective and cross-inhibit other cysteine proteases. Thus, it is highly desirable to develop selective and potent calpain inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murachi, T., 1989, Intracellular regulatory system involving calpain and calpastatin, Biochem. Int. 18: 263–294.

    PubMed  CAS  Google Scholar 

  2. Melloni, E., and Pontremoli, S., 1989, The calpains, Trends Neurosci. 12: 438–444.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, K.K.W., Villalobo, A. and Roufogalis, B.D., 1989, Calmodulin-binding proteins as calpain substrates, Biochem. J. 262: 693–706.

    PubMed  CAS  Google Scholar 

  4. Croall, D.E., and Demartino, G.N., 1991, Calcium-activated neutral protease (calpain) system: structure, function, and regulation, Physiol. Reviews 71: 813–847.

    CAS  Google Scholar 

  5. Saido, TC, Sorimachi, H., and Suzuki, K., 1994, Calpain: new perspectives in molecular diversity and physiological-pathological involvement, FASEB J. 8: 814–822.

    PubMed  CAS  Google Scholar 

  6. Wang, K.K.W., and Yuen P-w., 1994, Calpain inhibition: an overview of its therapeutic potentials, Trends Pharmacol. Sci. 15: 412–419.

    Article  PubMed  CAS  Google Scholar 

  7. Lipton, S.A., and Rosenberg, P.A., 1994, Excitatory amino acids as a final common pathway for neurologic disorders, New England J. Med. 330: 613–622.

    Article  CAS  Google Scholar 

  8. Meldrum, B., and Garthwaite, J., 1990, Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci. 11: 379–387.

    Article  PubMed  CAS  Google Scholar 

  9. Siman, R., and Noszek, J.C., 1988, Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo, Neuron 1: 279–287.

    Article  PubMed  CAS  Google Scholar 

  10. Arlinghaus, L., Mehdi, S., and Lee, K.S., 1991, Improved posthypoxic recovery with a membrane-permeable calpain inhibitor, Europ. J. Pharmacol. 209: 123–125.

    Article  CAS  Google Scholar 

  11. Hong, S.-C, Goto, Y, Lanzino, G., Soleau, S., Kassell, N.F., and Lee, K.S., 1994, Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia, Stroke 25: 663–669.

    Article  PubMed  CAS  Google Scholar 

  12. Bartus, R.T., Baker, K.L., Heiser, A.D., Sawyer, S.D., Dean, R.L., Elliott, P.J., and Straub, J.A., 1994, Postischemic adminstration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage, J. Cereb. Blood Flow Metab. 14, 537–544.

    Article  PubMed  CAS  Google Scholar 

  13. Buroker Kilgore, M., and Wang, K.K.W., 1993, ACoomassie brilliant blue G250-based colorimetric assay for measuring activity of calpain and other proteases, Anal. Biochem. 208: 387–392.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, K.K.W., Villalobo, A. and Roufogalis, B.D., 1988, Further characterization of the calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca2+-ATPase, Arch. Biochem. Biophys. 260: 696–704.

    Article  PubMed  CAS  Google Scholar 

  15. Emori, Y, Ohno, S., Tobita, M., and Suzuki, K., 1986, Gene structure of calcium-dependent protease retains the ancestral organization of the calcium-binding protein gene, FEBS lett. 194: 249–252.

    Article  PubMed  CAS  Google Scholar 

  16. Heussen, C, and Dowdle, E.B., 1980, Electrophoretic analysis of plasminogen activators in Polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102: 196–202.

    Article  PubMed  CAS  Google Scholar 

  17. Saido, T.C., Shibata, M., Takenawa, T, Murofushi, H., and Suzuki, K., 1992, Positive regulation of mu-calpain action by polyphosphoinositides, J. Biol. Chem. 267: 24585–24590.

    PubMed  CAS  Google Scholar 

  18. Weber, M.L., Probert, A.W., Dominick, M.A., and Marcoux, F.W., 1993, Early ultrastructural injury in neuronal cell culture after hypoxia or combined oxygen and glucose deprivation: neuroprotection with 4-(3-phosphonopropyl)-2-piperazinecarboxylic acid (CPP), Neurodegeneration 2: 63–72.

    Google Scholar 

  19. Marcoux, EW., Probert, A.W., and Weber, M.L., 1990, Hypoxic neuronal injury in tissue culture is associated with delayed calcium accumulation, Stroke 21 (Suppl. Ill): 71–74.

    Google Scholar 

  20. Koh, J.Y, and Choi, D.D., 1987, Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay, J. Neurosci. Methods 20: 83–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Wang, K.K.W. et al. (1996). Alpha-Mercaptoacrylic Acid Derivatives as Novel Selective Calpain Inhibitors. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics