Advertisement

O2 Flux Optode

A New Sensing Principle to Determine the Oxygen Flux and Other Gas Diffusions
  • D. W. Lübbers
  • T. Köster
  • G. A. Holst
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 388)

Abstract

By applying a transparent test membrane of defined diffusion properties between two layers of optical chemical oxygen sensors, O2 optodes, the measurement of oxygen diffusion, the oxygen flux, across the membrane becomes possible.1 The optode has the inherent advantage towards the established method of electrochemical oxygen measurements that the sensor is permeable for oxygen and does not consume the analyte. With this new sensing principle (Fig. 1) the O2 flux is calculated as the product of the oxygen partial pressure (pO2) difference between both sides of the membrane and the diffusion properties of the membrane. This sensor can be used to measure the 02 flux in different applications, e. g. the O2 flux into human tissue, into technical compartments as bioreactors or into biological systems. The selectivity of the proposed sensor is strongly influenced by the choice of an appropriate test membrane. With suitable indicators it is also possible to measure other gas fluxes. So, this principle opens up a new field of flux measurements.

Keywords

Fluorescence Lifetime Flux Measurement Oxygen Flux Sensor Head Sensor Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Lübbers, Fluorescence Based Chemical Sensors, Adv. Biosens., 2:215–260 (1992).Google Scholar
  2. 2.
    H. Baumgärtl, A.M. Ehrly, K. Saeger-Lorenz and D.W. Lübbers, Initial Results of Intracutaneous Measurements of pO2 Profiles, in A.M. Ehrly, J. Hauss and R. Huch (ed.), Clinical Oxygen Pressure Measurement, Springer Verlag, Berlin (1984) pp. 121–128.Google Scholar
  3. 3.
    D.W. Lübbers, Optical Monitoring of Oxygen, in A.M. Ehrly, W. Fleckenstein and M. Landgraf (ed.), Clinical Oxygen Pressure Measurement, Vol. III, Blackwell Wissenschaft, Berlin (1992), pp. 1–14.Google Scholar
  4. 4.
    D.W. Lübbers, Chemical in vivo Monitoring by Optical Sensors in Medicine, Sens. Actuat.B, 11:253–262 (1993).CrossRefGoogle Scholar
  5. 5.
    G.A. Holst, E. Voges and D.W. Lubbers, O2-Flux-Optode for Medical Application, Advances in Fluorescence Sensing Technology, SPIE Biomedical Optics, Los Angeles, CA, USA, Jan. 16–22 (1993), Vol. 1885, pp. 216–227.Google Scholar
  6. 6.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York andLondon (1983).Google Scholar
  7. 7.
    K. W Berndt and J.R. Lakowicz, Electroluminescent Lamp-Based Phase Fluorometer and Oxygen Sensor, Analyt. Bioch., 207:319–325 (1992).CrossRefGoogle Scholar
  8. 8.
    M.E. Lippitsch, J. Pusterhofer, M.J.P. Leiner and O.S. Wolfbeis, Fibre-Optic Sensor with the Fluorescence Decay Time as the Information Carrier, Analyt. Chim., 205:1–6 (1988).CrossRefGoogle Scholar
  9. 9.
    O.S. Wolfbeis, Oxygen Sensors, in O. S. Wolfbeis (ed.), Fiber Optic Chemical Sensors and Biosensors, Vol. II, CRC Press, Boston and London (1991), pp. 19–52.Google Scholar
  10. 10.
    J.M.Vanderkooi and D.F. Wilson, A New Method for Measuring Oxygen Concentration in Biological Systems, Adv. Exp. Med., 200:189–193 (1986).Google Scholar
  11. 11.
    J.R. Bacon and J.N. Demas, Determination of Oxygen Concentrations by Luminescence Quenching of a Polymer Immobilized Transition-Metal Complex, Analyt. Chem. 59:2780–2785 (1987).CrossRefGoogle Scholar
  12. 12.
    D.B. Papkovsky, J. Olah, I.V. Troyanovsky, N.A. Sadovsky, V.D. Rumyantseva, A.F. Mironov, A.I. Yaropolov and A.P. Savitsky, Phosphorescent Polymer Films for Optical Oxygen Sensors, Biosens. & Bioelectr., 7:199–206 (1991).CrossRefGoogle Scholar
  13. 13.
    M.J.P. Leiner, Luminescence Chemical Sensors for Biomedical Applications: Scope and Limitations, Analyt. Chim., 255:209–222 (1991).CrossRefGoogle Scholar
  14. 14.
    X.-M. Li and K.-Y. Wong, Luminescent Platinum Complex in Solid Films for Optical Sensing of Oxygen, Analyt. Chim., 262:27–32 (1992).CrossRefGoogle Scholar
  15. 15.
    J.I. Peterson, R.V Fitzgerald and D.K. Buckhold, Fiber-Optic Probe for In Vivo Measurement of Oxygen Partial Pressure, Analyt. Chem., 56:62–61 (1984).CrossRefGoogle Scholar
  16. 16.
    B.D. MacCraith, C.M. McDonagh, G. O’Keeffe, E.T. Keyes, J.G. Vos, B. O’Kelley and J.F. McGlip, Fibre Optic Oxygen Sensor Based on Fluorescence Quenching of Evanescent-Wave Excited Ruthenium Complexes in Sol-Gel Derived Porous Coatings, Analyst,775:385–388 (1993).CrossRefGoogle Scholar
  17. 17.
    J.L. Gehrich, D.W. Lubbers, N. Opitz, D.R. Hansmann, W.W. Miller, J.K. Tusa and M. Yafuso, Optical Fluorescence and its Application to an Intravascular Blood Gas Monitoring System, IEEE Trans. Biomed. Eng., BME-33/2:117–132(1986).CrossRefGoogle Scholar
  18. 18.
    G.A. Holst, T. Köster, E. Voges and D.W. Lübbers, FLOX - an Oxygen-Flux-Measuring System Using a Phase-Modulation Method to Evaluate the Oxygen Dependent Fluorescence Lifetime, Sens. & Act. B, (1994) (in press).Google Scholar
  19. 19.
    H.D. Luke, Signalübertragung, Springer-Verlag, Berlin, 3rd edn. (1985).Google Scholar
  20. 20.
    G.A. Holst, Entwicklung und Erprobung einer Sauerstoff-Flux-Optode mit einem Sauerstoff-Sensor nach dem Prinzip der dynamischen Fluoreszenzlöschung, VDI Verlag, Düsseldorf, 1994.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • D. W. Lübbers
    • 1
  • T. Köster
    • 1
  • G. A. Holst
    • 1
  1. 1.Max-Planck-Institut für Molekulare PhysiologieDortmundGermany

Personalised recommendations