Advertisement

In Vivo Measurement of Oxygen Pressure Using 19F-NMR Imaging

  • J. Lutz
  • U. Nöth
  • S. P. Morrissey
  • H. Adolf
  • R. Deichmann
  • A. Haase
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 388)

Abstract

Nuclear magnetic resonance (NMR) of the fluorine nucleus is an in vivo method to measure non-invasively oxygen pressures. The measurement is based on the effect that the longitudinal relaxation rate (R1 = 1/T1) increases linearly with the partial oxygen pressure (pO2) when the temperature is kept constant [1,2]:
$$R_1 = 1/T_1 = A + B \times pO_2 $$
(1)
The calibration constants A and B depend strongly on temperature, magnetic field strength, the fluorinated subtances, the resonance line used for imaging, and on the tissue type

Keywords

Nuclear Magnetic Resonance Partial Oxygen Pressure Oxygen Carrier Calibration Constant Chemical Shift Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parhami P, Fung BM. Fluorine-19 relaxation study of perfluoro chemicals as oxygen carriers. J. Phys. Chem. 87: 1928–1931 (1983).CrossRefGoogle Scholar
  2. 2.
    Mason RP, Shukla H, Antich PP. in vivo oxygen tension and temperature: Simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn. Reson. Med. 29: 296–302 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    Naito R, Yokoyama K. Perfluorochemical blood substitutes Fluosol-43, Fluosol-DA 20% and 35%. Technical Information Ser. No. 5. Green Cross Corp., Osaka p. 1–177 (1978).Google Scholar
  4. 4.
    Riess JG, Le Blanc M. Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications. Pure & Appi. Chem. 54: 2383–2406 (1982).CrossRefGoogle Scholar
  5. 5.
    Long DM, Long DC, Mattrey RF, Long R, Burgan AR, Herrik WC, Shellhamer DF. An overview of perfluoroctylbromide - application as a synthetic oxygen carrier and imaging agent for x-ray, ultrasound and nuclear magnetic resonance. Biomat. Art. Cells Art. Organs 16: 411–420 (1988).Google Scholar
  6. 6.
    Haase A. Snapshot FLASH MRL Applications to T1, T2, and chemical-shift imaging. Magn. Reson. Med. 13: 77–89(1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Nöth U, Deichmann R, Adolf H, Schwarzbauer C, Haase A. Fast acquisition of pO2 maps using 19F MRI and a new method for the suppression of chemical shift artifacts. J. Magn. Reson. B 105, in press (1994).Google Scholar
  8. 8.
    Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR ima-ging. J. Magn. Reson. 96: 608–612 (1992).Google Scholar
  9. 9.
    Nöth U, Morrissey SP, Deichmann R, Schwarzbauer C, Lutz J, Haase A. Retention half life of the perfluorocarbon F-44E in the reticuloendothelial system measured by fast 19F-MRI. 2nd Meeting of the SMR, San Francisco, Proc. Soc. Magn. Reson. Vol. 2: 721 (1994).Google Scholar
  10. 10.
    Nöth U, Morrissey S, Deichmann R, Adolf H, Schwarzbauer C, Lutz J, Haase A. in vivo measurement of partial oxygen pressure in large vessels and in the reticuloendothelial system using fast 19F-MRI (submitted). Magn. Reson. Med. 34 (1995).Google Scholar
  11. 11.
    Mason RP, Jeffrey FMH, Malloy CR, Babcock EE, Antich PP. A noninvasive assessment of myocardial oxygen tension: 19F NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn. Reson. Med. 27: 310–317 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    Hees PS, Sotak CH. Assessment of changes in murine tumor oxygenation in response to nicotinamide using 19F NMR relaxometry of a perfluorocarbon emulsion. Magn. Reson. Med. 29: 303–310 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    Mason RP, Antich PP, Babcock EE, Constantinescu A, Peschke P, Hahn EW. Non-invasive determination of tumor oxygen tension and local variation with growth. Int. J. Radiation Oncology Biol. Phys. 29: 95–103 (1994).CrossRefGoogle Scholar
  14. 14.
    Mason RP, Antich PP. Tumor oxygen tension: Measurement using Oxygent™ as a 19F NMR probe at 4.7 T. Art. Cells Blood Subs. Immob. Biotech. 22: 1361–1337 (1994).CrossRefGoogle Scholar
  15. 15.
    Dardzinsky BJ, Sotak CH: Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of perfluoro-15-erown-5-ether. Magn. Reson. Med. 32: 88–97 (1994).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • J. Lutz
    • 1
  • U. Nöth
    • 2
  • S. P. Morrissey
    • 3
  • H. Adolf
    • 2
  • R. Deichmann
    • 2
  • A. Haase
    • 2
  1. 1.Department of PhysiologyUniversity of WürzburgWürzburgGermany
  2. 2.Department of BiophysicsUniversity of WürzburgWürzburgGermany
  3. 3.Department of NeurologyUniversity of WürzburgWürzburgGermany

Personalised recommendations