Advertisement

Fractionation Effects of Oxygen Isotopes Within Interstitial Lung Disease

  • H. Heller
  • M. Könen
  • A. Overlack
  • K. -D. Schuster
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 388)

Abstract

Up to now diffusion limitation versus ventilation-perfusion inhomogeneities are in dispute as the main reason for impairing pulmonary gas exchange within interstitial lung diseases (Finley et al., 1962, Wagner et al., 1976, Jernudd-Wilhelmsson et al., 1986, Agusti et al., 1987, Hempleman and Hughes, 1991, Hughes et al., 1991, Yamaguchi et al., 1991). In order to assess pulmonary gas transport, such methods as the estimation of the arterial partial pressure of oxygen during nitrogen washout (Finley et al., 1962), the multiple inert gas elimination technique (Wagner et al., 1976, Jernudd-Wilhelmsson et al., 1986, Agusti et al., 1987, Hughes et al., 1991, Yamaguchi et al., 1991) and the determination of the single breath diffusing capacity for carbon monoxide (Finley et al., 1962, Wagner et al., 1976, Hughes et al., 1991) have been applied.

Keywords

Oxygen Isotope Idiopathic Pulmonary Fibrosis Pulmonary Fibrosis Interstitial Lung Disease Fractionation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agusti, A.G.N., Roca, J., Rodriguez-Roisin, R., Gea, J., Xaubet, A., and Wagner, RD., 1987, Role of 02 diffusion limitation in idiopathic pulmonary fibrosis, Am. Rev. Respir. Dis. 135:A307.Google Scholar
  2. Cotes, J. E., 1982, The.transfer factor (diffusing capacity), in “Standardized lung function testing” (Quanjer Ph. H., Editor), Report of the European Community for Coal and Steel, Luxembourg.Google Scholar
  3. Feldman, D.E., Yost jr., H.T., and Benson, B.B., 1959, Oxygen isotope fractionation in reactions catalyzed by enzymes, Science, 129: 146–147.PubMedCrossRefGoogle Scholar
  4. Finley, T.N., Swenson, E.W., and Comroe, J.H., 1962, The cause of arterial hypoxemia at rest in patients with ‘alveolar-capillary block syndrome’, J. Clin. Invest., 41: 618–622.PubMedCrossRefGoogle Scholar
  5. Heller, H., Könen, M., and Schuster, K.-D., 1993, Dependence of overall fractionation effect of respiration on ventilation at rest, Isotopenpraxis 28:133–141.CrossRefGoogle Scholar
  6. Heller, H., Schuster, K.-D., and Göbel, B. O., 1994, Dependency of overall fractionation effect of respirationon hemoglobin concentration within blood at rest, Adv. Exp. Med. Biol. 345:755–761.PubMedGoogle Scholar
  7. Hempleman, S.C., and Hughes, J.M.B., 1991, Estimating exercise DL02 and diffusion limitation in patients with interstitial fibrosis, Respir. Physiol., 83: 167–178.PubMedCrossRefGoogle Scholar
  8. Hughes, J.M.B., Lockwood, D.N.A., Jones, H.A., and Clark, R, J., 1991, DLCO/Q and diffusion limitation at rest and on exercise in patients with interstitial fibrosis, Respir. Physiol., 83: 155–166.PubMedCrossRefGoogle Scholar
  9. Jernudd-Wilhelmsson, Y, Hornblad, Y, and Hedenstierna, G., 1986, Ventilation-perfusion relationships in interstitial lung disease, Eur. J. Respir. Dis. 68:39–40.PubMedGoogle Scholar
  10. Piiper, J., and Sikand, R.S., 1966, Determination of Dco by the single breath method in inhomogeneous lungs: theory, Respir. Physiol., 1: 75–87.PubMedCrossRefGoogle Scholar
  11. Piiper, J., 1992, Diffusion-perfusion inhomogeneity and alveolar-arterial 02 diffusion limitation: theory, Respir. Physiol. 87:349–356.PubMedCrossRefGoogle Scholar
  12. Quanjer, Ph.H., 1982, Standardized lung function testing, in: Working party “Standardization of lung function tests” of the European community for Coal and Steel, Ph.H. Quanjer, ed., Luxembourg.Google Scholar
  13. Schuster, K.-D., Pflug, K.P., Forstel, H., and Pichotka, J.R, 1979, Adaptation of respiratory mass spectrometer to continuous recording of abundance ratios of stable oxygen isotopes, in: “Recent developments in mass spectrometry in biochemistry and medicine”, 2:451–462, A. Frigerio, ed., Plenum Publishing Corp., New York.Google Scholar
  14. Schuster, K.-D., and Pflug, K.P., 1989, The overall fractionation effect of isotopie oxygen molecules during oxygen transport and utilization in humans, Adv. Exp. Med. Biol., 248: 151–156.PubMedGoogle Scholar
  15. Schuster, K.-D. and Heller, H., 1994, Model analysis of oxygen isotope fractionation in humans due to disturbances of pulmonary gas exchange, Adv. Exp. Med. Biol, this volume.Google Scholar
  16. Wagner, P.D., Dantzker, D.R., Dueck, R., dePolo, J.L., Wasserman, K., and West, J.B., 1976, Distribution of ventilation-perfusion ratios in patients with interstitial lung disease, Chest 69: 256–257.PubMedCrossRefGoogle Scholar
  17. Yamaguchi, K., Kawai, A., Mori, M., Asano, K., Takasugi, T., Umeda, A., Kawashiro, T., and Yokoyama, T., 1991, Distribution of ventilation and diffusing capacity to perfusion in the lung, Respir. Physiol. 86:171–187.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • H. Heller
    • 1
  • M. Könen
    • 1
  • A. Overlack
    • 2
  • K. -D. Schuster
    • 1
  1. 1.Physiologisches Institut IUniversität BonnBonnGermany
  2. 2.Medizinische Universitäts-Poliklinik BonnBonnGermany

Personalised recommendations