Advertisement

Oxygen Transport in Tumors

Characteristics and Clinical Implications
  • Peter Vaupel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 388)

Abstract

Experimental evidence suggests that the hypoxic fraction in solid tumors may influence its growth, may increase its malignant potential, and may reduce its sensitivity towards non-surgical treatment modalities (e.g., standard irradiation, certain anticancer drugs). The role of the tumor O2 status in radio-/chemotherapy and its impact on relevant tumor biological characteristics of tumors are summarized in Table 1.

Keywords

Cervical Cancer Oxygen Partial Pressure Oxygenation Status Cumulative Frequency Distribution Normal Oral Mucosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Vaupel, F. Kallinowski & P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).PubMedGoogle Scholar
  2. 2.
    P. Vaupel. Oxygenation of human tumors. Strahlenther. Onkol. 166, 311–386 (1990).Google Scholar
  3. 3.
    P. Vaupel, K. Schienger & M. Höckel. Blood flow and tissue oxygenation of human tumors. Funktion sanal. Biol. Syst. 20, 165–185 (1991).Google Scholar
  4. 4.
    P. Vaupel, K. Schienger & M. Höckel. Blood flow and tissue oxygenation of human tumors: an update. Adv. Exp. Med. Biol. 317, 139–151 (1992).PubMedGoogle Scholar
  5. 5.
    P. Vaupel. Physiological properties of malignant tumours. NMR Biomed. 5, 220–225 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    P.W. Vaupel. Oxygenation of solid tumors. In: Drug Resistance in Oncology. Ed. Teicher, B.A. Marcel Dekker, New York, pp. 53–85 (1993).Google Scholar
  7. 7.
    P. Vaupel. Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Ernst Schering Research Foundation, Lecture 23, Berlin (1994).Google Scholar
  8. 8.
    E. Lartigau, E Lespinasse, L. Viru & M. Guichard. Does the direct measurement of oxygen tension in tumors have any adverse effects? Int. J. Radiat. Oncol. Biol. Phys. 22, 949–951 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Vaupel, K. Schienger, C. Knoop & M. Höckel. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized p02 tension measurements. Cancer Res. 51, 3316–3322 (1991).PubMedGoogle Scholar
  10. 10.
    S.J. Falk, R. Ward & N.M. Bleehen. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised p02 histography. Br. J. Cancer 66,919–924 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Runkel, A. Wischnik, J. Teubner, E. Kaven, J. Gaa & F. Melchert. Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized-p02-histography. Adv. Exp. Med. Biol. 345, 451–458 (1994).PubMedGoogle Scholar
  12. 12.
    J.M. Brown. Tumor hypoxia, drug resistance, and metastases. J. Natl. Cancer Inst. 82, 338–339 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    C.N. Coleman. Hypoxia in tumors: A paradigm for the approach to biochemical and physiologic heterogeneity. J. Natl. Cancer Inst. 80, 310–317 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    R.E. Durand. Keynote address: The influence of microenvironmental factors on the activity of radiation and drugs. Int. J. Radiat. Oncol. Biol. Phys. 20, 253–258 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    G.C. Rice, C. Hoy & R.T. Schimke. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, 83, 5978–5982 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    S.D. Young, R.S. Marshall & R.P. Hill. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl. Acad. Sci. USA, 85, 9533–9537 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    L.H. Gray, A.D. Conger, M. Ebert, TS. Hornsey & O.C.A. Scott. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).PubMedCrossRefGoogle Scholar
  18. 18.
    B.A. Teicher, S.A. Holden, A. Al-Achi & TS. Herman. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSallC murine fibrosarcoma. Cancer Res. 50, 3339–3344 (1990).PubMedGoogle Scholar
  19. 19.
    E.M. Zeman, D.P. Calkins, J.M. Cline, D.E. Thrall & J. A. Raleigh. The relationship between proliferative and oxygenation status in spontaneous canine tumors. Int. J. Radiat. Oncol. Biol. Phys. 27, 891–898 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    D.G. Hirst & J. Denekamp. Tumor cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42(1979).PubMedGoogle Scholar
  21. 21.
    F. Monschke, W.-U. Müller, U. Winkler & C. Streffer. Cell proliferation and vascularization in human breast carcinomas. Int. J. Cancer 49, 812–815 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    R.P. Hill. Tumor progression: potential role of unstable genomic changes. Cancer Met. Rev. 9, 137–147 (1990).CrossRefGoogle Scholar
  23. 23.
    M. Höckel, C. Knoop, K. Schienger, B. Vorndran, E. Baussmann, M. Mitze, P. Knapstein & P. Vaupel. Intratumoral p02 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 26, 45–50(1993).PubMedCrossRefGoogle Scholar
  24. 24.
    C.B.J.H. Wilson, A.A. Lammertsma, CG. McKenzie, K. Sikora, T. Jones. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res. 52, 1592–1597 (1992).PubMedGoogle Scholar
  25. 25.
    E.M. Grischke, M. Kaufmann, M. Eberlein-Gonska, T Mattfeldt, Ch. Sohn, G. Basiert. Angiogenesis as a diagnostic factor in primary breast cancer: microvessel quantitation by stereological methods and correlation with color Doppler sonography. Onkologie 17, 35–42 (1994).CrossRefGoogle Scholar
  26. 26.
    M. Höckel, K. Schienger, C. Knoop & P. Vaupel. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized 02 tension measurements. Cancer Res. 51, 6098–6102 (1991).PubMedGoogle Scholar
  27. 27.
    E. Lartigau, L. Martin, P. Lambiti, C. Haie-Meder, A. Gerbaulet, F. Eschwege & M. Guichard. Mesure de la pression partielle en oxygène dans des tumeurs du col utérin. Bull. Cancer Radiother. 79, 199–206 (1992).Google Scholar
  28. 28.
    E. Lartigau, E., L. Viru, C. Haie-Meder, M.F. Cosset, M. Delapierre, A. Gerbaulet, F. Eschwege & M. Guichard. Feasibility of measuring oxygen tension in uterine cervix carcinoma. Eur. J. Cancer 28A, 1354–1357(1992).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Molls, F. Kallinowski & H.J. Feldmann. Radiosensitivity of tumors depending on oxygenation. Proc. IORT Meeting, Munich, Germany (1992).Google Scholar
  30. 30.
    HJ. Feldmann. Optimierungsansätze und Limitationen in der regionalen Thermoradiotherapie von Beckentumoren. Thesis, University of Essen, Germany (1994).Google Scholar
  31. 31.
    R. Rampling, G. Cruickshank, A.D. Lewis, S.A. Fitzsimmons & P. Workman. Direct measurement of p02 distribution and bioreductive enzymes in human malignant brain tumours. Int. J. Radiat. Oncol. Biol. Phys., 29, 427–432(1994).PubMedCrossRefGoogle Scholar
  32. 32.
    D.M. Brizel, G. Rosner, J. Harrelson, L.R. Prosnitz & M.W. Dewhirst. Pretreatment oxygenation profiles of human soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys., in press (1994).Google Scholar
  33. 33.
    W. Fleckenstein, J.R. Jungblut, M. Suckfull, W. Hoppe & Ch. Weiss. Sauerstoffdruckverteilungen in Zentrum und Peripherie maligner Kopf-Hals-Tumoren. Dtsch. Z. Mund. Kiefer GesichtsChir. 12, 205–211 (1993).Google Scholar
  34. 34.
    W. Mueller-Klieser, P. Vaupel, R. Manz & R. Schmidseder. Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int. J. Radiat. Oncol. Biol. Phys. 7, 1397–1404 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Martin, E. Lartigau, P. Weeger, P. Lambin, A M. Le Ridant, A. Lusinchi, P. Wibault, F. Eschwege, B. Luboinski & M. Guichard. Changes in the oxygenation of head and neck tumours during carbogen breathing. Radiother. Oncol. 27, 123–130 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    E. Lartigau, A.M. Le Ridant, P. Lambin, P. Weeger, L. Martin, R. Sigal, A. Lusinchi, B. Luboinski, F. Eschwege & M. Guichard. Oxygenation of head and neck tumors. Cancer 71, 2319–2325 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Guichard & E. Lartigau. Personal communication (1994).Google Scholar
  38. 38.
    E. Lartigau, H. Randrianarivelo, L. Martin, S. Stern, CD. Thomas, M. Guichard, P. Weeger, A.M. Le Ridant, B. Luboinski, T. Nguyen, J.-C. Ortoli, F. Grange, M.-F. Avril, A. Lusinchi, P. Wibault, C. Haie-Meder, A. Gerbaulet & F. Eschwege. Oxygen tension measurements in human tumors: The Institut Gustave-Roussy experience. Radiat. Oncol. Invest., in press (1994).Google Scholar
  39. 39.
    M. Nordsmark, S.M. Bentzen & J. Overgaard. Measurement of human tumour oxygenation status by a Polarographie needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol. 33, 383–389 (1994).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Peter Vaupel
    • 1
  1. 1.Institute of Physiology and PathophysiologyUniversity of MainzMainzGermany

Personalised recommendations