Advertisement

Oxygen Electrodes and Optodes and their Application In Vivo

  • D. W. Lübbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 388)

Abstract

In the 1940s it was well known that the transport of oxygen within the tissue occurs by diffusion. Since by diffusional transport oxygen pressure gradients develop, the state of tissue oxygen supply can be characterized by the distribution of local pO2. At that time, however, it was only possible to measure mean tissue pO2. This was done by introducing e.g. a small gas bubble into the tissue1. After equilibration the bubble was withdrawn and analyzed by gas analysis. It was tried to understand these measurements by applying the cylindrical tissue model of Krogh2,3, but these measurements did not help much to understand the physiological presuppositions of anoxia or hypoxia because local tissue measurements were missing. The situation was changed when in 1942 P.W. Davies and F. Brink published their paper on “Microelectrodes for Measuring Local Oxygen Tension in Animal Tissue”4. This work was done in the laboratory of D.W. Bronk at the Johnson Foundation in Philadelphia, USA. The authors describe in great detail manufacturing and application of polarographic pO2 electrodes with a sensor surface of only 25 μm. Such a small sensor surface was needed because their aims were to measure “variations of oxygen tensions over small distances in tissues” to locate “sites of oxygen consumption by mapping concentration gradients” or “to measure the oxygen tension in blood of superficial arterioles and venules of the cat cerebral cortex, in the cortical substance itself, at the surface of muscle cells and at various distances from the surface of single celled organs”. About the development of this sensor Roseman, Goodwin and McCulloch mention in a footnote of their paper,5 that qualitative and quantitative polarographie analysis “was first employed in Dr. Bronk’s laboratory. By this method Brink and Davies determined the metabolism of the excised nerve.

Keywords

Oxygen Sensor Oxygen Electrode Excited Singlet State Reduction Current Oxygen Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Campbell, Gas tensions in the tissues, Physiol. Rev. 11:1 (1931).Google Scholar
  2. 2.
    A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol. 52:509 (1919).Google Scholar
  3. 3.
    E Kreuzer, Oxygen supply to tissues: The Krogh modell and its assumptions, Experientia 38:1415(1982).PubMedCrossRefGoogle Scholar
  4. 4.
    P.W. Davies. and E Brink jr., Microelectrodes for measuring local oxygen tensions in animal tissue, Rev. Scient. Instr. 13: 524(1942).CrossRefGoogle Scholar
  5. 5.
    E. Roseman, C.W. Goodwin and W.S. McCulloch, Rapid changes in cerebral oxygen tension induced by altering the oxygenation and circulation of the blood, J. Neurophysiol. 9:33 (1946).PubMedGoogle Scholar
  6. 6.
    G.A. Millikan, Experiments on muscle haemoglobin in vivo: the instantanious measurement of muscle metabolism, Biol. Science 123:218 (1937).CrossRefGoogle Scholar
  7. 7.
    H.A. Laitinen and I.M. Kolthoff, A study of diffusion processes by electrolysis with microelectrodes, J. Am. Chem. Soc. 61:3344 (1939).CrossRefGoogle Scholar
  8. 8.
    A. Rémond, Aspects physiologiques de l’oxygene cortical, Rev. Neurol [Paris] 80:579 (1948).Google Scholar
  9. 9.
    P.W. Davies, The oxygen cathode, Phys. Techn. Biol. Res. 4:137 (1962).Google Scholar
  10. 10.
    D.W. Lubbers, H. Baumgärtl, H. Fabel, A. Huch, M. Kessler, K. Kunze, R. Riemann, D. Seiler, and S. Schuchhardt, Principle of construction and application of various platinum electrodes, Prog. Resp. Res. 3:136(1969).Google Scholar
  11. 11.
    I. Fatt. “Polarographie Oxygen Sensor”, CRC Press Inc. Cleveland, Ohio (1976).Google Scholar
  12. 12.
    F. Kreuzer, H.P. Kimmich and M. Brezina, Polarographic determination of oxygen in biological materials, in: “Medical and Biological Applications of Electrochemical Devices”, J. Kroyta, ed., John Wiley&Sons Ltd., New York (1980).Google Scholar
  13. 13.
    E. Gnaiger and H. Forstner. “Polarographic Oxygen Sensors”, Springer-Verlag, Berlin (1983).Google Scholar
  14. 14.
    V. Linek, J. Sinkule, and V. Vacek, Dissolved oxygen probes, in: “Comprehensive Biotechnology”, M. Moo-Young, ed., Pergamon Press, Oxford (1985).Google Scholar
  15. 15.
    E. A.H.Hall, The electrochemical sensor, in: “Medical Applications of Microcomputers”, WA. Corbett, ed., John Wiley&Sons Ltd., New York (1987).Google Scholar
  16. 16.
    H. Baumgärtl, W. Zimelka, D.W. Lubbers, pH changes in front of the hydrogen generating electrode during measurements with an electrolytic hydrogen cleareance sensor, Adv. Exp. Med. Biol. 277:107 (1990).PubMedGoogle Scholar
  17. 17.
    L. Clark, Monitor and control of blood and tissue oxygen tension, Trans. Am. Soc. Artif. Intern. Organs 2:41 (1956).Google Scholar
  18. 18.
    J.S. Lundsgaard, J. GrØnlund, and H. Degn, Error in oxygen measurements in open systems owing to oxygen consumption in unstirred layer, Biotechnol. Bioengin. 20:809 (1978).CrossRefGoogle Scholar
  19. 19.
    E.A.H. Hall, The pulsed membrane gas electrode, in: “Neonatal Physiological Measurements”, P. Rolfe, ed., Butterworth (1986).Google Scholar
  20. 20.
    D.J. Gavaghan, J.S. Rollet and C.W. Hahn, Numerical simulation of the time-dependent current to membrane-covered oxygen sensors, J. Electroanal. Chem. 348:15 (1993).CrossRefGoogle Scholar
  21. 21.
    D.B. Cater, IA. Silver and G.M. Wilson, Apparatus and technique for the quantitative measurement of oxygen tension in living tissues, Proc. R. Soc. Lond. [Biol.] 151:256 (1959).CrossRefGoogle Scholar
  22. 22.
    H. Baumgärtl and D.W. Lubbers, Microcoaxial needle sensor for Polarographie measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties, in: “Polarograpic Oxygen Sensors”, E. Gnaiger and H. Forstner, eds, Springer-Verlag, Berlin (1983).Google Scholar
  23. 23.
    H. Baumgärtl, Systematic investigations of needle electrode properties in Polarographie measurements of local tissue pO2, in: “Clinical Oxygen Pressure Measurement”, A.M. Ehrly, J. Hauss and R. Huch, eds., Springer-Verlag, Berlin (1987).Google Scholar
  24. 24.
    W.J. Albery, W.N. Brooks, S.P. Gibson and CE.W Hahn, An electrode for PN2o and Po2 analysis in blood gas, J. Appl. Physiol. 45:637 (1978).Google Scholar
  25. 25.
    I. Bergmann, Amperometric oxygen sensors: problems with cathodes and anodes of metals other than silver, Analyst 110:365 (1985).CrossRefGoogle Scholar
  26. 26.
    W Fleckenstein and C.H. Weiss, A comparison of pO2-histograms from rabbit hindlimb muscles obtained by simultaneous measurements with hypodermic needle electrodes and with surface electrodes, Adv. Exp. Med. Biol. 169:447(1984).PubMedGoogle Scholar
  27. 27.
    P. Boekstegers, M. Weiss and W. Fleckenstein. The effect of hypercapnia on the distributuion of pO2 values in resting muscle, in: “Clinical Oxygen Pressure Measurement II”, A.M. Ehrly, W. Fleckenstein, J. Hauss and R.Huch, eds., Blackwell Ueberreuther Wissenschaft, Berlin (1990).Google Scholar
  28. 28.
    W.J. Whalen, J. Riley and R Nair, A microelectrode for measuring intracellular pO2, J. Appi Physiol. 23:789 (1967).Google Scholar
  29. 29.
    D.G. Buerk and T.K. Goldstick, Analysis of the oxygen barrier in the arterial wall from recessed pO2 microelectrode measurements, Microvasc. Res. 17:69 (1979).Google Scholar
  30. 30.
    B.Yu, H. Baumgärtl and D.W. Lubbers, An improved Polarographie multiwire pO2 electrode, particularly for measurement of high pO2 values, Adv. Exp. Med. Biol. 169:877 (1984).PubMedGoogle Scholar
  31. 31.
    G. Gust, K. Booij, W. Helder and B. Sundby, On the velocity sensitivity (stirring effect) of Polarographie oxygen microelectrodes, Netherland. J. Sea Res. 21(4):255 (1987).CrossRefGoogle Scholar
  32. 32.
    G Kortüm, “Reflexionsspektroskopie”, Springer Verlag, Berlin (1969).Google Scholar
  33. 33.
    J.R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Plenum Press, New York (1983).Google Scholar
  34. 34.
    K. Matthes, Untersuchungen über den Verlauf der Oxyhämoglobin Reduktion in der menschlichen Haut, Pflügers Arch. 246:70–91 (1942).CrossRefGoogle Scholar
  35. 35.
    G.G. Guilbaut, “Practical Fluorescence”, M. Dekker, New York (1973).Google Scholar
  36. 36.
    D.W. Lübbers, Fluorescence based chemical sensors, Adv. Biosens. 2:215–260 (1992).Google Scholar
  37. 37.
    O.S. Wolfbeis, Fiber optical fluorosensors in analytical chemistry, in: “Molecular Luminescence Spectroscopy: Methods and Applications”, Part II, S.G. Schulman, ed., Wiley, New York (1984).Google Scholar
  38. 38.
    H. Kautsky, Quenching of luminescence by oxygen, Trans. Faraday Soc. 35:216–219 (1932).CrossRefGoogle Scholar
  39. 39.
    O. Stern and M. Volmer, Über die Abklingzeit der Fluoreszenz, Physikal Z. 20:183 (1919).Google Scholar
  40. 40.
    I.B. Berlman, “Handbook of Fluorescence Spectra of Aromatic Molecules”, Academic Press, New York (1971).Google Scholar
  41. 41.
    I. Bergman, Rapid-response atmospheric oxygen monitor based on fluorescence quenching, Nature 218:396(1968).CrossRefGoogle Scholar
  42. 42.
    J.A. Knopp and I. Longmuir, Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid, Biochim. Biophys. Acta 279:393 (1972).PubMedGoogle Scholar
  43. 43.
    W.M. Vaughan and G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence in water: a dynamic probe of the microenvironment, Biochemistry 9:464 (1970).PubMedCrossRefGoogle Scholar
  44. 44.
    D.W. Lubbers and N. Opitz, The pO2-“optode”, a new tool to measure pO2 of biological gases and fluids by quantitative fluorescence photometry, Pflügers Arch. Suppl. 359: R145 (1975).Google Scholar
  45. 45.
    J.I. Peterson, R.V Fitzgerald and D.V. Buckhold, Fiber-optic probe for in vivo measurement of oxygen partial pressure, Anal. Chem. 56:62–67(1984).PubMedCrossRefGoogle Scholar
  46. 46.
    M.E. Lippitsch, J. Pusterhofer, M.J.P. Leiner, and O.S. Wolfbeis, Fiber-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1 (1988).CrossRefGoogle Scholar
  47. 47.
    J.M. Vanderkooi, G. Maniara, T.J. Green and D.F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J. Biol. Chem. 262:5476 (1987).PubMedGoogle Scholar
  48. 48.
    D.B. Papovsky, Luminescent porphyrins as probes for optical (bio)sensors, Sensors and Actuators B 11:293 (1993).CrossRefGoogle Scholar
  49. 49.
    E.D. Lee, T.C. Werner and WR. Seitz, Luminescence ratio indicators for oxygen, Anal. Chem. 59: 279 (1987).CrossRefGoogle Scholar
  50. 50.
    O.S. Wolfbeis, Oxygen sensors, in. “Fiber Optic Chemical sensors and Biosensors”, O.S. Wolfbeis, ed., CRC Press, Boca Raton.USA (1991).Google Scholar
  51. 51.
    A. Sharma and O.S. Wolfbeis, Fiber-optic oxygen sensor based on fluorescence quenching and energy transfer, Appi. Spectrosc. 42:1009 (1988).CrossRefGoogle Scholar
  52. 52.
    W.R. Seitz, Chemical sensors based on immobilized indicators and fiber optics. CRC Critical Reviews in Analytical Chemistry 19:135 (1988).Google Scholar
  53. 53.
    N. Opitz and D.W. Lubbers, Theory and development of fluorescence-based opto-chemical oxygen sensors: oxygen optodes, in: “Advances in Oxygen Monitoring”, K.K. Tremper and S.J. Barker, eds., Little Brown and Company, Boston (1987).Google Scholar
  54. 54.
    D.W. Lubbers, N. Opitz, P.P. Speiser, and H.J. Bisson, Nanoencapsulated fluorescence indicator molecules measuring pH and pO2 down to submicroscopical regions on the basis of the optode- principle, Z. Naturforsch. C. 32:133 (1977).PubMedGoogle Scholar
  55. 55.
    D.W. Lubbers and N. Opitz, Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems, Sensors and Actuators 4:641 (1983).CrossRefGoogle Scholar
  56. 56.
    N. Opitz and D.W. Lubbers, Increased resolution power in pO2 analysis at low pO2 levels via sensitivity enhanced pO2 sensors (pO2 optodes) using fluorescence dyes, Adv. Exp. Med. Biol. 180:261 (1985).Google Scholar
  57. 57.
    Z. Zhujun and W.R. Seitz, Optical sensor for oxygen based on immobilized hemoglobin, Anal. Chem. 38:220(1985).Google Scholar
  58. 58.
    R.A. Wolthuis, S. McCrea, J.C. Haiti, E.Saaski, G.L. Mitchell, K. Garein and R. Willard, Development of a medical fiber-optic sensor based on optical absorption, IEEE Trans. Biomed. Eng. 39:185 (1992).PubMedCrossRefGoogle Scholar
  59. 59.
    H.Y. Ebril and B.M Baysal, A new colorimetrie method for the determination of the “dissolved” oxygen permeability coefficients of polymeric membranes, J. Membr. Science 26:199 (1986).CrossRefGoogle Scholar
  60. 60.
    W. Müller, A. Winnefeld, O. Kohls, T. Scheper, W. Zimelka and H. Baumgärtl, Real and pseudo oxygen gradients in Ca-alginate beads monitored during Polarographie pO2 measurements using Pt- microelectrodes, Biotechnol. Bioeng. 44:617 (1994).PubMedCrossRefGoogle Scholar
  61. 61.
    Y. Okada, K. Mückenhoff, G. Holtermann, H. Acker, and P. Scheid, Depth profiles of pH and pO2 in the isolated brain stem-spinal cord of the neonatal rat, Resp. Physiol. 93:315–326 (1993).CrossRefGoogle Scholar
  62. 62.
    D.W. Lubbers, H. Baumgärtl and W Zimelka, Heterogeneity and stability of local pO2 distribution within the brain tissue, Adv. Exp. Med. Biol. 345:567 (1994).PubMedGoogle Scholar
  63. 63.
    D. Jamieson and H.A.S. van den Brenk, Comparison of oxygen tensions in normal tissue and yoshima sarcoma of the rat breathing air or oxygen at 4 atmospheres, Brit. J. Cancer 17:70 (1963).PubMedCrossRefGoogle Scholar
  64. 64.
    K. Turek, K. Rakusan, J. Olders, L. Hoofd, and F. Kreuzer, Computed myocardial pO2 histograms: effects of various geometrical and functional conditions, J. Appi. Physiol. 70:1845–1853 (1991).Google Scholar
  65. 65.
    M. Höckel, K. Schienger, C. Knoop and P. Vaupel, Oxigenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements, Cancer. Res. 51:6098 (1991).PubMedGoogle Scholar
  66. 66.
    K. van Rossem, H. Vermarien and R. Bourgain, Construction, calibration and evaluation of pO2 electrodes for chronicle implantation in rabbit brain cortex. Adv. Exp. Med. Biol. 316:85 (1992).PubMedCrossRefGoogle Scholar
  67. 67.
    P. Boekstegers, J. Diebold and Ch. Weiss, Selective ECG synchronized suction and retroinfusion of coronary veins: first results of studies in acute myocardial ischemia in dogs, Cardiovasc. Res. 24:456 (1990).PubMedCrossRefGoogle Scholar
  68. 68.
    T.K. Hunt, A new method of determining tissue oxygen tension, Lancet 26:1370 (1964).CrossRefGoogle Scholar
  69. 69.
    K. Jonsson, J.A. Jensen, W.H. Goodson, H. Scheuenstuhl, J. West, H. Williams Hopf, and T.K. Hunt, Tissue oxygenation, anemia and perfusion in relation to wound healing in surgical patients, Annals of Surg. 214:605 (1991).CrossRefGoogle Scholar
  70. 70.
    A.P. Murphy and P. Rolfe, Intravascular oxygen sensor with polyetherurethane membrane: in vitro performance, Med.&Biol.Eng.&Comput. 30:121 (1992).CrossRefGoogle Scholar
  71. 71.
    L. Gehrich, D.W. Lubbers, N. Opitz, D.R. Hansmann, WW. Miller, J.K. Tusa and M. Yafuso, Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng., BME 33:117 (1986).CrossRefGoogle Scholar
  72. 72.
    S.J. Barker, K.K. Tremper, J. Hyatt, J. Zaccari, H.A. Heitzmann, B.M. Holman, K. Pike, L.S. Ring, M. Teope, and T.B. Thaure, Continuous fiberoptic arterial oxygen tension measurements in dogs, J. Clin. Monit. 3:48(1987).PubMedCrossRefGoogle Scholar
  73. 73.
    B.A. Shapiro, R.D. Cane, CM. Chomka, L.E. Bandala and WT. Peruzzi, Preliminary evaluation of an intra- arterial blood gas system in dogs and humans, Crit. Care Med. 17:455 (1989).PubMedCrossRefGoogle Scholar
  74. 74.
    B.E. Slain, RH. King and L. Schlain, Clinical evaluation-Continuous real-time intra-arterial blood gas monitoring during anesthesia and surgery by fiber optic sensor, Int. J. Clin. Monit. Comput. 9:45 (1992).CrossRefGoogle Scholar
  75. 75.
    A. Gottlieb, S. Divers and H.K. Hui, in vivo applications of fiberoptic chemical sensors, in: “Biosensors with Fiberoptics”, D.L. Wise and L.B. Wingard, eds.„ Humana Press, Lifton, NJ (1991).Google Scholar
  76. 76.
    D.W. Lubbers and N. Opitz, Die pCO2/pO2-Optode: Eine neue pCO2- bzw. pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flüssigkeiten. Z. Naturforsch. C. 30:532 (1975).PubMedGoogle Scholar
  77. 77.
    J.S. Barker and J.H. Hyatt, Continuous measurement of intra-arterial pHa, paCO2 and paO2 in the operating room, Anesth. Analg. 73:43 (1991).PubMedGoogle Scholar
  78. 78.
    N. Opitz, H.-J Graf and D.W. Lübbers, Oxygen sensor for the temperature range 300 to 500 K based on fluorescence quenching of the indicator-treated silicone membranes, Sensors and Actuators 13:159 (1988).CrossRefGoogle Scholar
  79. 79.
    M. Kessler and D.W. Lubbers, Aufbau und Anwendungsmöglichkeiten verschiedener pO2 Elektroden, Pflügers Arch. 291:82 (1966).Google Scholar
  80. 80.
    G. A. Holst, D.W. Lubbers and E. Voges, O2-flux-optode for medical application, SPIE Adv. Fluoresc. Sens. Technol. 1885:216(1993).Google Scholar
  81. 81.
    D.W. Lübbers, Chemical in vivo monitoring by optical sensors in medicine, Sensors and Actuators B 11:253 (1993).CrossRefGoogle Scholar
  82. 82.
    R. Huch, A. Huch and D.W. Lübbers, “Transcutaneous pO2”, Georg Thieme, Stuttgart (1981).Google Scholar
  83. 83.
    H. Haljamäe, I. Frid, J. Holm and S. Holm, Continuous conjunctival oxygen tension (pcjO2) monitoring for assessment of cerebral oxygenation and metabolism during carotid artery surgery, Acta Anaesthesiol 6. Scand. 33:610(1989).CrossRefGoogle Scholar
  84. 84.
    H.Karpf, H.W Kroneis, H.J. Marsoner, H. Metzler and N. Gravenstein, Fast responding oxygen sensor for respiratorial analysis, SPIE Chem. Biochem. Environmen. Sens 1172: 296 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • D. W. Lübbers
    • 1
  1. 1.Max Planck Institut für Molekulare PhysiologieDortmundGermany

Personalised recommendations