Skip to main content

Ascorbic Acid and Connective Tissue

  • Chapter
Subcellular Biochemistry

Part of the book series: Subcellular Biochemistry ((SCBI,volume 25))

Abstract

Observations of deficient wound healing in sailors suffering from scurvy have been reported by explorers and physicians since the sixteenth century, together with the observation that citrus could have curative properties. Thereafter, Wolbach and Howe (1926) found that in scorbutic guinea pigs there was a deficient production of intercellular matrix which could be reversed by administration of citrus. The discovery, isolation, and chemical characterization of vitamin C was performed in the early thirties. Since then, several studies have been carried out with the aim of characterizing the cellular and matrix defects in scurvy and the effect of vitamin C on the healing process in species unable to synthesize ascorbic acid, such as guinea pigs and humans. Several models have been proposed, including animals made scorbutic during fetal development (Rivers et al., 1970) and postnatal growth (Barnes et al., 1970), and cultured organs and cells grown on chemically defined media in the absence (Jeffrey and Martin, 1966) or in the presence of various concentrations of ascorbic acid (Russell and Manske, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BiP:

heavy chain binding protein

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

hsp70:

heat shock protein 70

IGF:

insulin growth factor

IGFBP:

insulin growth factor binding protein

TGF-β:

transforming growth factor β

References

  • Appling, W. D., O’Brien, W. R., Johnston, D. A., and Duvic, M., 1989, Synergistic enhancement of type I and III collagen production in cultured fibroblasts by transforming growth factor-ß and ascorbate, FEBS Lett. 250:541–544.

    Article  PubMed  CAS  Google Scholar 

  • Aulthouse, A. L., 1994, Prolonged exposure of human chondrocytes to ascorbic acid modifies cellular behavior in an agarose gel, Anat. Rec. 238:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, M. J., Constable, B. J., Morton, L. F., and Kodicek, E., 1970, Studies in vivo on the biosynthesis of collagen and elastin in ascorbic acid-deficient guinea pigs. Evidence for the formation and degradation of a partially hydroxylated collagen, Biochem. J. 119:575–585.

    PubMed  CAS  Google Scholar 

  • Bartlett, M. K., Jones, C. M., and Ryan, A. E., 1942, Vitamin C and wound healing. I. Experimental wounds in guinea pigs, N. Engl. J. Med. 226:469–473.

    Article  CAS  Google Scholar 

  • Bassuk, J. A., and Berg, R. A., 1989, Protein disulphide isomerase, a multifunctional endoplasmic reticulum protein, Matrix 9:244–258.

    PubMed  CAS  Google Scholar 

  • Berg, R. A., and Prockop, D. J., 1973a, Purification of 14C-protocollagen and its hydroxylation by prolyl-hydroxylase, Biochemistry 12:3395–3401.

    Article  CAS  Google Scholar 

  • Berg, R. A., and Prockop, D. J., 1973b, The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen, Biochem. Biophys. Res. Commun. 52:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, G. H., 1944, Effect of vitamin C deficiency on experimental wounds. Tensile strength and histology, Lancet 1:688–692.

    Article  Google Scholar 

  • Brenner, D. A., and Chojkier, M, 1987, Acetaldehyde increases collagen gene transcription in cultured fibroblasts, J. Biol. Chem. 262:17690–17696.

    PubMed  CAS  Google Scholar 

  • Bressan, G. M., Castellani, I., Giro, G. M., Volpin, D., Fornieri, C, and Pasquali-Ronchetti, I., 1983, Banded fibers in tropoelastin coacervates at physiological temperatures, J. Ultrastruct. Res. 82:335–340.

    Article  PubMed  CAS  Google Scholar 

  • Bressan, M. G., Pasquali-Ronchetti, I., Fornieri, C, Mattioli, F., Castellani, I., and Volpin, D., 1986, Relevance of aggregation properties of tropoelastin to the assembly and structure of elastin fibers, J. Ultrastruct. Mol. Struct. Res. 94:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Brinckmann, J., Bodo, M., Brey, M., Wolff, H. H., and Muller, P. K., 1994, Analysis of the age-related composition of human skin collagen and collagens synthesized by fibroblast cultures, Arch. Dermatol. Res. 286:391–395.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, B. P., Qiao, M., Howell, D. S., and Boyan, B. D., 1994, Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metallopro-teinases after addition of beta-glycerophosphate and ascorbic acid, Calcif. Tissue Int. 54:399–408.

    Article  PubMed  Google Scholar 

  • Chakraborty, S., Nandi, A., Mukhopadhyay, M., and Mukhopadhyay, C. K., 1994, Ascorbate protects guinea pig tissues against lipid peroxidation, Free Rad. Biol. Med. 16:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Chessler, S.D., and Byers, P. H., 1992, Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I: the Gly-X-Y repeat pattern, J. Biol. Chem. 267:7751–7757.

    PubMed  CAS  Google Scholar 

  • Chessler, S..D, and Byers, P. H., 1993, BiP binds type I procollagen pro-alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta, J. Biol. Chem. 268:18226–18233.

    PubMed  CAS  Google Scholar 

  • Chojkier, M., Spanheimer, R., and Peterkofsky, B., 1983, Specifically decreased collagen biosynthesis in scurvy dissociated from an effect on proline hydroxylation and correlated with body weight loss, J. Clin. Invest. 72:826–835.

    Article  PubMed  CAS  Google Scholar 

  • Chojkier, M., Houglum, K., Solis-Herruzo, J., and Brenner, D. A., 1989, Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts, J. Biol. Chem. 264:16957–16962.

    PubMed  CAS  Google Scholar 

  • Choong, P. F. M., Martin, T J., and Ng, K. W., 1993, Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts, J. Orthop. Res. 11:638–647.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. A., Starcher, B. C, and Urry, D. W., 1974, Coacervation of tropoelastin results in fiber formation, J. Biol. Chem. 249:997-998. Crandon, J. H., Lund, C. C, and Dill, D. B., 1940, Experimental human scurvy, N. Engl. J. Med. 223:353–369.

    Google Scholar 

  • Darr, D., Combs, S., and Pinnell, S., 1993, Ascorbic acid and collagen synthesis: Rethinking a role for lipid peroxidation, Arch. Biochem. Biophys. 307:331–335.

    Article  PubMed  CAS  Google Scholar 

  • DeClerck, Y. A., and Jones, P. A., 1980, The effect of ascorbic acid on the nature and production of collagen and elastin by rat smooth muscle cells, Biochem. J. 186:217–2125.

    PubMed  Google Scholar 

  • Dehm, P., andProckop, D. J., 1971, Synthesis and extrusion of collagen by freshly isolated cells from chick embryo tendon, Biochim. Biophys. Acta 240:358–369.

    CAS  Google Scholar 

  • Denis, I., Pointillart, A., and Lieberherr, M., 1994, Cell stage-dependent effects of ascorbic acid on cultured porcine bone cells, Bone Miner. 25:149–161.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, D.M., and Franzblau, C., 1982, Effects of ascorbate on insoluble elastin accumulation and crosslink formation in rabbit pulmonary artery smooth muscle cultures, Biochemistry 18:4195–4202.

    Article  Google Scholar 

  • Edward, M., and Oliver, R. F., 1983, Changes in the synthesis, distribution and sulphation of glycosaminoglycans of cultured human skin fibroblasts upon ascorbate feeding, J. Cell Sci. 64:245–254.

    PubMed  CAS  Google Scholar 

  • Faris, B., Ferrera, R., Toselli, P., Nambu, J., Gonnerman, W. A., and Franzblau, C, 1984, Effect of varying amounts of ascorbate on collagen, elastin and lysyl oxidase synthesis in aortic smooth muscle cell cultures, Biochim. Biophys. Acta 797:71–75.

    PubMed  CAS  Google Scholar 

  • Franceschi, R. T., and Iyer, B. S., 1992, Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells, J. Bone Miner. Res. 7:235–246.

    Article  PubMed  CAS  Google Scholar 

  • Franceschi, R. T., Iyer, B. S., and Cui, Y., 1994, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells, J. Bone Miner. Res. 9:843–854.

    Article  PubMed  CAS  Google Scholar 

  • Geesin, J. C, Darr, D., Kaufmen, R., Murad, S., and Pinnell, S. R., 1988, Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblasts, J. Invest. Dermatol. 90:420–424.

    Article  PubMed  CAS  Google Scholar 

  • Geesin, J. C, Hendricks, L. J., Falkenstein, P. A., Gordon, J. S., and Berg, R. A., 1991, Regulation of collagen synthesis by ascorbic acid: Characterization of the role of ascorbate-stimulated lipid peroxidation, Arch. Biochem. Biophys. 290:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Geesin, J. C, Brown, L. J., Gordon, J. S., and Berg, R. A., 1993, Regulation of collagen synthesis in human dermal fibroblasts in contracted collagen gels by ascorbic acid, growth factors and inhibitors of lipid peroxidation, Exp. Cell Res. 206:283–290.

    Article  CAS  Google Scholar 

  • Goldstein, R. H., Poliks, CF., Pilch, P. F., Smith, B. D., and Fine, A., 1989, Stimulation of collagen formation by insulin and insulin-like growth factor I in cultures of human lung fibroblasts, Endocrinology 124:964–970.

    Article  PubMed  CAS  Google Scholar 

  • Gosiewska, A., Wilson, S., Kwon, D., and Peterkowsky, B., 1994, Evidence for an in vivo role of insulin-like growth factor-binding protein-1 and -2 as inhibitors of collagen gene expression in vitamin C-deficient and fasted guinea pigs, Endocrinology 134:1329–1339.

    Article  PubMed  CAS  Google Scholar 

  • Gould, B. S., 1958, Biosynthesis of collagen. III. The direct action of ascorbic acid on hydroxyproline and collagen formation in subcutaneous polyvinyl sponge implants in guinea pigs, J. Biol. Chem. 232:637–649.

    PubMed  CAS  Google Scholar 

  • Gould, B. S., and Woessner, J. F., 1957, Biosynthesis of collagen. The influence of ascorbic acid on the proline, hydroxyproline, glycine and collagen content of regenerating guinea pig skin, J. Biol. Chem. 266:289–300.

    Google Scholar 

  • Harwood, R., Grant, M. E., and Jackson, D. S., 1975, Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells, Biochem. J. 152:291–302.

    PubMed  CAS  Google Scholar 

  • Hata, R. I., and Senoo, H., 1989, L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissue-like substance by skin fibroblasts, J. Cell. Physiol. 138:8–16.

    Article  PubMed  CAS  Google Scholar 

  • Hata, R. I., and Senoo, H., 1992, Extracellular matrix system regulates cell growth, tissue formation, and cellular functions, Tissue Cult. Res. Commun. 11:337–343.

    Google Scholar 

  • Hata, R. I., Sunada, H., Arai, K., Sato, T., Ninomiya, T., Nagai, Y., and Senoo, H., 1988, Regulation of collagen metabolism and cell growth by epidermal growth factor and ascorbate in cultured human skin fibroblasts, Eur. J. Biochem. 173:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Hering, T. M., Kollar, J., Huynh, T D., Varelas, J. B., and Sandell, L. J., 1994, Modulation of extracellular matrix gene expression in bovine high-density chondrocyte cultures by ascorbic acid and enzymatic resuspension, Arch. Biochem. Biophys. 314:90–98.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, H. A., 1940, The role of vitamin C in wound healing, Br. J. Surg. 28:436–461.

    Article  Google Scholar 

  • Hutton, J. J., Tappel, A. L., and Udenfriend, S., 1967, Cofactor and substrate requirements of collagen proline hydroxylase, Arch. Biochem. Biophys. 118:231–240.

    Article  CAS  Google Scholar 

  • Jeffrey, J. J., and Martin, G. R., 1966, The role of ascorbic acid in the biosynthesis of collagen. I. Ascorbic acid requirement by embryonic chick tibia in tissue culture, Biochim. Biophys. Acta 121:269–280.

    PubMed  CAS  Google Scholar 

  • Kao, J., Huey, G., Kao, R., and Stern, R., 1990, Ascorbic acid stimulates production of glycosaminoglycans in cultured fibroblasts, Exp. Mol. Pathol. 53:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Kielty, CM., and Shuttieworth, CA., 1993, Synthesis and assembly of fibrillin by fibroblasts and smooth muscle cells, J. Cell Sci. 106:167–173.

    PubMed  CAS  Google Scholar 

  • Kim, M., Otsuka, M., Yu, R., Kurata, T., and Arakawa, N., 1994, The distribution of ascorbic acid and dehydroascorbic acid during tissue regeneration in wounded dorsal skin of guinea pigs, Inte. J. Vitam. Nutr. Res. 64:56–59.

    CAS  Google Scholar 

  • Kivirikko, K. I., and Prockop, D. J., 1967, Enzymatic hydroxylation of proline and lysine in procollagen, Proc. Natl. Acad. Sci. USA 57:782–789.

    Article  PubMed  CAS  Google Scholar 

  • Kurata, S., and Hata, R., 1991, Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative, J. Biol. Chem. 266:9997–10003.

    PubMed  CAS  Google Scholar 

  • Kurata, S. I., Senoo, H., and Hata, R. I., 1993, Transcriptional activation of type I collagen genes by ascorbic acid 2-phosphate in human skin fibroblasts and its failure in cells from a patient with a2 (I)-chain-defective Ehlers-Danlos syndrome, Exp. Cell. Res. 206:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Lanman, T. H., and Ingalls, T H., 1937, Vitamin C deficiency and wound healing. Experimental and clinical study, Ann. Surg. 105:616–625.

    Article  PubMed  CAS  Google Scholar 

  • Leboy, P. S., Vaias, L., Uschmann, B., Golub, E., Adams, S. L., and Pacifici, M., 1989, Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes, J. Biol. Chem. 264:17281–17286.

    PubMed  CAS  Google Scholar 

  • Leushner, J. R., and Haust, M. D., 1986, The effect of ascorbate on the synthesis of minor (non-interstitial) collagens by cultured bovine aortic smooth muscle cells, Biochim. Biophys. Acta 883:284–292.

    PubMed  CAS  Google Scholar 

  • Lyons, B. L., and Schwartz, R. I., 1984, Ascorbate stimulation of PAT cells causes an increase in transcription rates and a decrease in degradation rates of procollagen mRNA, Nucl. Acids Res. 012:2569–2579.

    Article  CAS  Google Scholar 

  • Malaval, L., Modrowski, D., Gupta, A. K., and Aubin, J. E., 1994, Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures, J. Cell. Physiol. 158:555–572.

    Article  PubMed  CAS  Google Scholar 

  • Mitsumoto, Y., Liu, Z., and Klip, A., 1994, Long-lasting vitamin C derivative, ascorbic acid 2-phosphate increases myogenin gene expression and promotes differentiation in L6 muscle cells, Biochem. Biophys. Res. Commun. 199:394–402.

    Article  PubMed  CAS  Google Scholar 

  • Monboisse, J. C, and Borel, J. P., 1992, Oxidative damage to collagen, in Free Radicals and Aging (J. Emerit and B. Chance, eds.), pp. 323–327. Birkhauser Verlag, Basel.

    Google Scholar 

  • Mukhopadhyay, M., Mukhopadhyay, CK., and Chatterjee, I. B., 1993, Protective effect of ascorbic acid against lipid peroxidation and oxidative damage in cardiac microsomes, Mol. Cell. Biochem. 126:69–75.

    Article  PubMed  CAS  Google Scholar 

  • Myllila, R., Kuutti-Savoilanen, E. R., and Kivirikko, K. I., 1978, The role of ascorbate in the prolyl-hydroxylase reaction, Biochem. Biophys. Res. Commun. 83:441–448.

    Article  Google Scholar 

  • Nandan, D., Clarke, E. P., Ball, E. H., and Sanwall, B. D., 1990, Ethyl-3,4-dihydroxybenzoate inhibits myoblast differentiation: Evidence for an essential role of collagen, J. Cell Biol. 110:1673–1679.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, A. S., Page, R. C, Kuzan, F., and Cooper, CG., 1978, Elastin cross-linking in vitro. Studies on factors influencing the formation of desmosines by lysyl oxidase action on tropoelastin, Biochem. J. 173:857–862.

    PubMed  CAS  Google Scholar 

  • Ohkura, K., Fujii, T., Konishi, R., and Terada, H., 1990, Increased attachment and confluence of skin epidermal cells in culture induced by ascorbic acid: Detection by permeation of trypan blue across cultured cell layers, Cell Struct. Fund. 15:143–150.

    Article  CAS  Google Scholar 

  • Olsen, B. R., and Prockop, D. J., 1974, Ferritin-conjugated antibodies used for labeling of organelles involved in the cellular synthesis and transport of procollagen, Proc. Natl. Acad. Sci. USA 71:2033–2037.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, B. R., Berg, R. A., Kishida, Y., and Prockop, D. J., 1973, Collagen synthesis: Localization of prolyl hydroxylase in tendon cells detected with ferritin-labeled antibodies, Science 182:825–827.

    Article  PubMed  CAS  Google Scholar 

  • Pacifici, M., 1990, Independent secretion of proteoglycans and collagens in chick chondrocyte cultures during acute ascorbic acid treatment, Biochem. J. 272:193–199.

    PubMed  CAS  Google Scholar 

  • Peterkofsky, B., Gosiewska, A., Kipp, D. E., Shah, V., and Wilson, S., 1994, Circulating insulin-like growth factor binding proteins (IGFBPs) 1 and 2 induced in vitamin C-deficient or fasted guinea pigs inhibit IGF-I action in cultured cells, Growth Factors 10:229–241.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, C. L., Tajima, S., and Pinnell, S. R., 1992, Ascorbic acid and transforming growth factor-β1 increase collagen biosynthesis via different mechanisms: Coordinate regulation of pro α(1) and pro αl(III) collagens, Arch. Biochem. Biophys. 295:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, C. L., Combs, S. B., and Pinnell, S. R., 1994, Effects of ascorbic acid on proliferation and collagen synthesis in relation to the donor age of human dermal fibroblasts, J. Invest. Dermatol. 103:228–232.

    Article  PubMed  CAS  Google Scholar 

  • Quaglino Jr., D., Fornieri, C, Botti, B., Davidson, J. M., and Pasquali-Ronchetti, I., 1991, Opposing effects of ascorbate on collagen and elastin deposition in the neonatal rat aorta, Eur. J. Cell Biol. 54:18–26.

    PubMed  CAS  Google Scholar 

  • Quaglino, Jr., D., Zoia, O., Kennedy, R., and Davidson, J. M., 1989, Ascorbate affects collagen and elastin mRNAs in pig skin fibroblast cultures, Eur. J. Cell Biol. Suppl. 49,(28):45.

    Google Scholar 

  • Rivers, J. M., Krook, L., and Cormier, S. A., 1970, Biochemical and histological study of guinea pig fetal and uterine tissue in ascorbic acid deficiency, J. Nutr. 100:217–227.

    PubMed  CAS  Google Scholar 

  • Robertson, W. B., and Schwartz, B., 1953, Ascorbic acid and the formation of collagen, J. Biol. Chem. 201:689–696.

    Google Scholar 

  • Rosenbloom, J., and Cywinski, A., 1976, Inhibition of proline hydroxylation does not inhibit secretion of tropoelastin by chick aorta cells, FEBS Lett. 65:246–250.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom, J., Harsch, M., and Jimenez, S., 1973, Hydroxyproline content determines the denaturation temperature of chick tendon collagen, Arch. Biochem. Biophys. 158:478–484.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., and Benditt, E. P., 1962, Wound healing and collagen formation. II. Fine structure in experimental scurvy, J. Cell Biol. 12:533–551.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., and Benditt, E. P., 1965, Wound healing and collagen formation. Quantitative electron microscopy radiographic observations of proline-3H utilization by fibroblasts, J. Cell Biol. 27:83–106.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. E., and Manske, P. R., 1991, Ascorbic acid requirement for optimal flexor tendon repair in vitro, J. Orthop. Res. 9:714–719.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, L. J, and Daniel, J. C, 1988, Effects of ascorbic acid on collagen mRNA levels in short-term chondrocyte cultures, Connect. Tissue Res. 17:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E., Bienkowski, R. S., Coltoff-Schiller, B., Goldfisher, S., and Blumenfeld, O. O., 1982, Changes in the components of extracellular matrix and in growth properties of cultured aortic smooth muscle cells upon ascorbate feeding, J. Cell Biol. 92:462–470.

    Article  PubMed  CAS  Google Scholar 

  • Scott-Burden, T., Davies, P. J., and Gevers, W., 1979, Elastin biosynthesis by smooth muscle cell cultured under scorbutic conditions, Biochem. Biophys. Res. Commun. 91:739–746.

    Article  PubMed  CAS  Google Scholar 

  • Senoo, H., and Hata, R., 1994, Extracellular matrix regulates and L-ascorbic acid 2-phosphate further modulates morphology, proliferation, and collagen synthesis of perisinusoidal stellate cells, Biochem. Biophys. Res. Commun. 200:999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. M., and Jones, P. A., 1979, Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine, Cell 17:771–779.

    Article  PubMed  CAS  Google Scholar 

  • Tuderman, L., Myllyla, R., and Kivirikko, K. I., 1977, Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates, Eur. J. Biochem. 80:341–348.

    Article  PubMed  CAS  Google Scholar 

  • Uitto, J., Hoffmann, H. P., and Prockop, D. J., 1976, Synthesis of elastin and procollagen by cells from embryonic aorta. Difference in the role of hydroxyproline and the effects of proline analogs on the secretion of the two proteins, Arch. Biochem. Biophys. 173:187–200.

    Article  PubMed  CAS  Google Scholar 

  • Uitto, J., and Prockop, D. J., 1974, Hydroxylation of peptide-bound proline and lysine before and after chain completion of the polypeptide chains, Arch. Biochem. Biophys. 164:210–217.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Sugano, H., Prasad, K. U., Long, M. L., and Bhatnagar, R. S., 1979, Prolyl hydroxylation of the polypentapeptide model of elastin impairs fiber formation, Biochem. Biophys. Res. Commun. 90:194–198.

    Article  PubMed  CAS  Google Scholar 

  • Volpin, D., and Pasquali-Ronchetti, I., 1977, The ultrastructure of high temperature coacervates of elastin, J. Ultrastruct. Res. 61:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Wegger, I., and Palludan, B., 1994, Vitamin C deficiency causes hematological and skeletal abnormalities during fetal development in swine, J. Nutr. 124:241–248.

    PubMed  CAS  Google Scholar 

  • Wilson, J. X., and Dixon, S. J., 1989, High-affinity sodium dependent uptake of ascorbic acid by rat osteoblasts, J. Membr. Biol. 11:83–91.

    Google Scholar 

  • Wolbach, S. B., and Howe, P. R., 1926, Intercellular substances in experimental scorbutis, Arch. Pathol. Lab. Med. 1:1–24.

    CAS  Google Scholar 

  • Wolfer, J. A., Farmer, C. J., Carroll, W. W., and Manshardt, D. O., 1947, Experimental study of wound healing in vitamin C depleted human subjects, Surg. Gynecol. Obstet. 84:1–15.

    PubMed  CAS  Google Scholar 

  • Yu, R., Kurata, T., and Arakawa, N., 1988, The behavior of L-ascorbic acid in the prolyl 4-hydroxylase reaction, Agric. Biol. Chem. 52:729–733.

    Article  CAS  Google Scholar 

  • Yue, B. Y J. T., Higginbotham, E. J., and Chang, I. L., 1990, Ascorbic acid modulates the production of fibronectin and laminin by cells from an eye tissue trabecular meshwork, Exp. Cell Res. 187:65–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Ronchetti, I.P., Quaglino, D., Bergamini, G. (1996). Ascorbic Acid and Connective Tissue. In: Harris, J.R. (eds) Subcellular Biochemistry. Subcellular Biochemistry, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0325-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0325-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7998-0

  • Online ISBN: 978-1-4613-0325-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics