Band Structure Theory

  • An-Ban Chen
  • Arden Sher
Part of the Microdevices book series (MDPF)


Semiconductor electronics provides an excellent demonstration of the close connection between modern engineering and quantum physics. It was an understanding of the electronic structure of semiconductors in the 1940s that led to the invention of the first transistor (Bardeen and Brattain, 1948; Brattain and Bardeen, 1948; Shockley and Pearson, 1948)—the backbone of modern computers. Since then, quantum mechanics has been an integral part of the progress of modern electronics technology. As devices become smaller, reaching submicron dimensions where electrons and holes traverse the active region of devices without experiencing a collision (the ballistic transport regime), quantum effects become even more important. Band structure studies deal with the energy levels and wave functions of electrons in materials and their relations to material properties. This chapter will begin by introducing the basic concepts of energy bands (Section 5.1). We will then describe two of the simplest band structure methods used for crystalline semiconductors—the tight-binding method (Section 5.2) and the plane-wave method (Section 5.3). The important band structure results for pure semiconductors are summarized in Section 5.4. The difficulties associated with the aperiodic potentials in an alloy and their effects on band gaps are discussed in Section 5.5. The remaining sections are devoted to the treatment of disordered alloys using the Green function methods, including the coherent potential approximation (CPA) (Soven, 1967; Velicky et al., 1968; Kirpatrick et al., 1970) and the perturbation method (PT). Both CPA and PT will be formulated for semiconductor alloys in this chapter and will be used to treat effects on band-edge states. These formalisms will be applied to detailed calculations of band structures of semiconductor alloys in Chapter 7.


Band Structure Green Function SchrOdinger Equation Coherent Potential Approximation Semiconductor Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibert, C., G. Bordure, A. Laugier, and J. Chevallier (1972), Phys. Rev. B 6, 1301.ADSCrossRefGoogle Scholar
  2. Andersen, O.K., O. Jepson, and D. Glotzel (1985), in Highlights of Condensed Matter Theory, ed. F. Bassiani et al. ( North-Holland, Amsterdam).Google Scholar
  3. Bachelet, G.B., D.R. Hamman, and M. Schluter (1982), Phys. Rev. B 26, 4199.ADSCrossRefGoogle Scholar
  4. Bardeen, J., and W.H. Brattain (1948), Phys. Rev. 74, 230.ADSCrossRefGoogle Scholar
  5. Brattain, W.H., and J. Bardeen (1948), Phys. Rev. 74, 231.ADSCrossRefGoogle Scholar
  6. Callaway, J. (1964), Energy Band Theory( Academic Press, New York).MATHGoogle Scholar
  7. Callaway, J. (1974), Quantum Theory of the Solid State( Academic Press, New York ), Chapter 4.Google Scholar
  8. Chelikowsky, J.R., and M.L. Cohen (1976), Phys. Rev. B 14, 556.ADSCrossRefGoogle Scholar
  9. Chen, A.-B. (1973), Phys. Rev. B 7, 2230.ADSCrossRefGoogle Scholar
  10. Chen, A.-B., and A. Sher (1982), Phys. Rev. B 26, 6603.ADSCrossRefGoogle Scholar
  11. Chen, A.-B., G. Weisz, and A. Sher (1972), Phys. Rev. B 5, 2897.ADSCrossRefGoogle Scholar
  12. Cohen, M.L., and D.J. Chadi (1980), in Handbook on Semiconductors (North-Holland, Amsterdam) Vol. 2, Chapter 4B.Google Scholar
  13. Cohen, M.L., and J.R. Chelikowsky (1989), Electronic Structure and Optical Properties of Semiconductors, 2nd ed. ( Springer-Verlag, Berlin).Google Scholar
  14. Gyorffy, B.L. and G.M. Stocks (1979), in Electronics in Disordered Metals and Metallic Surfaces, Vol. 42, NATO Advanced Study Inst. Ser. B ( Plenum, New York).Google Scholar
  15. Hamann, D.R., M. Schluter, and C. Chiang (1979), Phys. Rev. Lett. 43, 1494.ADSCrossRefGoogle Scholar
  16. Harrison, W.A. (1966), Pseudo-potentials in the Theory of Metals(W.A. Benjamin, New York). Hass, K., R.J. Lampert, and H. Ehrenreich (1984a), Phys. Rev. Lett. 52, 77.Google Scholar
  17. Hass, K., R.J. Lampert, and H. Ehrenreich (1984a), Phys. Rev. Lett. 52, 77.Google Scholar
  18. Hass, K., B. Velicky, and H. Ehrenreich (1984b), Phys. Rev B 29, 3697.ADSCrossRefGoogle Scholar
  19. Hedin, L., and B.I. Lundquist (1971), J. Phys. C 4, 2064.ADSCrossRefGoogle Scholar
  20. Hill, R. (1974), J. Phys. C: Solid State Phys. 7, 521.ADSCrossRefGoogle Scholar
  21. Hybertsen, M.S., and S.G. Louie (1987), Phys. Rev. Lett. 58, 1551.ADSCrossRefGoogle Scholar
  22. Kane, E.O. (1982), in Handbook on Semiconductors (North-Holland, Amsterdam), Vol. 1, Chapter 4A.Google Scholar
  23. Kirpatrick, S., B. Velicky, and H. Ehrenreich (1970), Phys. Rev. B 1, 3250.ADSCrossRefGoogle Scholar
  24. Kittel, C. (1986), Introduction to Solid State Physics, 6th ed. ( Wiley, New York).Google Scholar
  25. Krishnamurthy, S., M.A. Berding, A. Sher, and A.-B. Chen (1988), Phys. Rev. B 37, 4254.ADSCrossRefGoogle Scholar
  26. Landolt, H., and R. Bornsetin (1982), in Numerical Data and Functional Relationships in Science and Technology(ed. K.H. Hellwidge), Vol. 17, ( Springer-Verlag, Berlin).Google Scholar
  27. Landolt, H., and R. Bornstein (1988), in Numerical Data and Functional Relationships in Science and Technology(ed. K.H. Hellwidge), Vol. 22, ( Springer-Verlag, Berlin).Google Scholar
  28. Lempert, R.J., K.C. Hass, and H. Ehrenreich (1987), Phys. Rev. B 36, 1111.ADSCrossRefGoogle Scholar
  29. Ley, L., R.A. Pollak, F.R. McFeely, S.P. Kowalczyk, and A. Shirley (1973), Phys. Rev. B 9, 600. Madelung, O. (1991), in Semiconductors: Group TV and III-V Compounds( Springer-Verlag, New York).Google Scholar
  30. Madelung, O. (1991), in Semiconductors: Group IV and III–V Compounds (Springer-Verlag, New York).Google Scholar
  31. Pauli, W. (1925), Z. Phys. 31, 765.ADSCrossRefGoogle Scholar
  32. Shockley, W., and G.L. Pearson (1948), Phys. Rev 74, 232.ADSCrossRefGoogle Scholar
  33. Soven, P. (1967), Phys. Rev. 156, 809.ADSCrossRefGoogle Scholar
  34. Spicer, W.E., J.A. Silberman, P. Morgen, I. Lindau, J.A. Wilson, A.-B. Chen, and A. Sher (1982), Phys. Rev. Lett. 49, 948.ADSCrossRefGoogle Scholar
  35. Van Hove, L. (1953), Phys. Rev. 89, 1189.ADSMATHCrossRefGoogle Scholar
  36. van Schilfgaarde, M., and M. Methfessel (1991), unpublished.Google Scholar
  37. Van Vechten, J.A., and T. K. Bergstresser (1970), Phys. Rev. B 1, 3351.ADSCrossRefGoogle Scholar
  38. Velicky, B.S., S. Kirkpatrkk, and H. Ehrenreieh (1968), Phys. Rev. 175, 747.ADSCrossRefGoogle Scholar
  39. Wang, C.S., and B.M. Klein (1981), Phys. Rev. B 24, 3393.ADSCrossRefGoogle Scholar
  40. Wei, S.H., L.G. Ferreira, I.E. Bernard, and A. Zunger (1990), Phys. Rev. B 42, 9622.ADSCrossRefGoogle Scholar
  41. Williams, E.W., and V. Rehn (1968), Phys. Rev. 172, 798.ADSCrossRefGoogle Scholar
  42. Yeh, C.-Y, A.-B. Chen, D.M. Nicholson, and W.H. Buttler (1991), Phys. Rev. B 42, 10976.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • An-Ban Chen
    • 1
  • Arden Sher
    • 2
  1. 1.Auburn UniversityAuburnUSA
  2. 2.SRI InternationalMenlo ParkUSA

Personalised recommendations