Skip to main content
  • 699 Accesses

Abstract

In summary, molecular techniques greatly expanded our knowledge of the nature of biological ice nucleation, especially in bacteria. What little is known of the nature of fungal ice nuclei, however, suggests that they may be quite different from those of procrayotes (Ashworth and Kieft, 1995). The investigation of fungal ice nuclei may be of particular interest because of the relatively high temperature at which they are active in ice nucleation activity and their apparent lower susceptibility to environmental extremes such as temperature and pH compared to bacterial ice nuclei (Ashworth and Kieft, 1995). The many applications of warm temperature biological ice nuclei will benefit from models of the structure of these ice nucleation sites and of an understanding of the biological processes that lead to differential expression of biological ice nuclei. It can be anticipated that biological ice nuclei will be exploited for a number of scientific and commercial purposes because of the ease by which they can be manipulated, introduced into other organisms and potentially increased in efficiency based on the knowledge of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashworth. E.N. and Kieft, T.L. (1995) Ice nucleation activity associated with plants and fungi, in Biological Ice Nucleation And Its Applications, eds R.E. Lee, G.J. Warren and L.V. Gusta, American Phytopathological Society Press, St. Paul, MN, pp. 137 - 162.

    Google Scholar 

  • Burke, M.J. and Lindow, S.E. (1990) Surface properties and size of the ice nucleation site in ice nucleation active bacteria: theoretical considerations. Cryobiology, 27, 80 - 84.

    Article  Google Scholar 

  • Fall, R. and Wolber. P.K. (1995) Biochemistry of bacterial ice nucleation, in Biological Ice Nucleation And Its Applications, eds. R.E. Lee, G.J. Warren and L.V. Gusta, American Phytopathological Society Press, St. Paul, MN, pp. 63 - 84.

    Google Scholar 

  • Govindarajan, A.G. and Lindow, S.E. (1988a) Phospholipid requirements for expression of ice nuclei in Pseudomonas syringaeand in vitro. J. Biol. Chem., 263, 9333 - 9338.

    CAS  Google Scholar 

  • Govindarajan, A.G. and Lindow, S.E. (1988b) Size of bacterial ice nucleation sites measured in situby gamma radiation inactivation analysis. Proc. Natl. Acad. Sci., 85, 1334 - 1338.

    Article  CAS  Google Scholar 

  • Gurian-Sherman, D. and Lindow, S.E. (1993) Bacterial ice nucleation: significance and molecular basis. FASEB J., 9, 1338 - 1343.

    Google Scholar 

  • Gurian-Sherman, D. and Lindow. S.E. (1994) Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Cryobiology, 32, 129 - 138.

    Article  Google Scholar 

  • Hirano, S.S. and Upper, C.D. (1983) Ecology and epidemiology of foliar plant pathogens. Annu. Rev. Phytopathol., 21, 243 - 269.

    Article  Google Scholar 

  • Hirano, S.S. and Upper, C.D. (1990) Population biology and epidemiology of Pseudomonas syringae, Annu. Rev. Phytopath28, 155 - 177.

    Google Scholar 

  • Kajava, A. and Lindow, S.E. (1993) A molecular model of the three-dimensional structure of bacterial ice nucleation proteins. J. Molec. Biol., 232, 709 - 717.

    Article  CAS  Google Scholar 

  • Kim. H.K., Orser, C., Lindow, S.E, and Sands, D.C. (1987) Xanthomonas campestrispv. translucensstrains active in ice nucleation. Plant Disease. 71, 994 - 997.

    Google Scholar 

  • Lindgren, P.B., Govindarajan, A.G., Frederick. R. etal.(1939) An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringaepv. phaseolicola. EM BO J8, 1291 - 1301.

    Google Scholar 

  • Lindow, S.E. (1983a) The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol21, 363 - 384.

    Google Scholar 

  • Lindow, S.E. (1985) Ecolo. ot P eudomonas syringaerelevant to the field use of Ice- deletion mutants constructed in vitrofor plant frost control, in Engineering Organisms in the Environment: Scientific Issues, eds H.O. Halvorson, D. Pramer and M. Rogul, American Society Microbiology, Washington, DC, pp. 23 - 25.

    Google Scholar 

  • Lindow, S.E. (1995a) Control of epiphytic ice nucleation-active bacteria for management of plant frost injury, in Biological Ice Nucleation And Its Applications, eds R.E. Lee, G.J. Warren and L.V. Gusta, American Phytopathological Society Press, St. Paul, MN, pp. 239 - 256.

    Google Scholar 

  • Lindow, S.E. (1995b) Role of membrane fluidity on production and stability of bacterial ice nuclei active at warm subfreezing temperatures. Cryobiology, 32, 247 - 258.

    Article  CAS  Google Scholar 

  • Lindow, S.E., Amy, D.C, Barchet, W.R. and Upper, CD. (1978) The role of bacterial ice nuclei in frost injury to sensitive plants, in Plant Cold Hardiness and Freezing Stress, ed. P. Li, Academic Press, New York, pp. 249 - 263.

    Google Scholar 

  • Lindow, S.E., Amy, D.C. and Upper, C.D. (1978a) Distribution of ice nucleation active bacteria on plants in nature. Appl. Environ. Microbiol., 36, 831 - 838.

    CAS  Google Scholar 

  • Lindow, S.E., Amy, D.C. and Upper, C.D. (1978b) Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to com. Phytopathology, 68, 523 - 527.

    Google Scholar 

  • Lindow, S.E., Lahue, E., Govindarajan, A.G. et al(1989) Localization of ice nucleation activity and the iceCgene product in Pseudomonas syringaeand Escherichia coli. Mo I. Plant-Microbe Interact., 2, 262 - 272.

    Article  CAS  Google Scholar 

  • Maki, L.R., Galyon, E.L., Chang-Chien, M. and Caldwell, D.R. (1974) Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol, 28, 456 - 460.

    CAS  Google Scholar 

  • Mueller, GM., Wolber, P.K. and Warren, G.J. (1990) Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology, 27, 416 - 422.

    Article  CAS  Google Scholar 

  • Nemecek-Marshall, M., LaDuca, R. and Fall, R. (1993) High-level expression of ice nuclei in a Pseudomonas syringaestrain is induced by nutrient limitation and low temperature. J. Bacteriol., 175, 4062 - 4070.

    CAS  Google Scholar 

  • Phelps, P., Giddings, T.H.. Prochoda, M. and Fall, R. (1986) Release of cell-free ice nuclei by Erwinia herbicola. J. Bacteriol, 167. 496 - 502.

    CAS  Google Scholar 

  • Pooley, L. and Brown, T.A. (1991) Effects of culture conditions on expression of the ice nucleation phenotvpe of Pseudomonas syringae, FEMS Microbiol. Eett., 11, 229- 232.

    Google Scholar 

  • Pouleur, S., Richard, C, Martin J.-G. and Antoun, H. (1992) Ice nucleation activity in Fnsariiim acuminatumand Fusarium avenaceum. Appl. Environ. Microbiol., 58, 2960- 2964.

    Google Scholar 

  • Rogers. J.S.. Stall, R.E. and Burke. M.J. (1987) Low-temperature conditioning of the ice nucleation active bacterium, Erwinia herbicola. Cryo bio logy, 24, 270 - 279.

    Google Scholar 

  • Ruggles, J.A., Nemecek-Marshall, M. and Fall, R. (1993) Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly. J. Bacteriol., 175, 7216 - 7221.

    CAS  Google Scholar 

  • Schnell, R.C. and Vali, G. (1976) Biogenic ice nuclei. Part I. Terrestrial and marine sources. J. Atmos. ScL, 33, 1554 - 1564.

    Article  Google Scholar 

  • Warren, G.J. (1987) Bacterial ice nucleation: molecular biology and applications. Biotechnol. Gen. Eng. Rev., 5, 107 - 135.

    CAS  Google Scholar 

  • Warren, G.J. (1995) Identification and analysis of ina genes and proteins, in Biological Ice Nucleation And Its Applications, eds R.E. Lee, G.J. Warren and L.V. Gusta. American Phytopathological Society Press, St. Paul, MN, pp. 85-100.

    Google Scholar 

  • Warren, G. and Corroto, L. (1989) The consensus sequence of ice nucleation proteins from

    Google Scholar 

  • Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syrinae. Gene, 85,

    Google Scholar 

  • 2; 9-242.

    Google Scholar 

  • Warren, G. and Wolber, P. (1991) Molecular aspects of microbial ice nucleation. Mol.

    Google Scholar 

  • Microbiol, 5, 239-243.

    Google Scholar 

  • Warren, G., Corroto, L. and Wolber, P. (1986) Conserved repeats in diverged ice nucleation

    Google Scholar 

  • Structural genes from two species of Pseudomonas. Nucleic Acids Res, 14, 8047-8060.

    Google Scholar 

  • Wolber, P.K. (1993) Bacterial ice nucleation. Adv. Microbiol. Physiol., 34, 203 - 237.

    Article  CAS  Google Scholar 

  • Yankofsky, S.A., Levin, Z., Bertold, T. and Sandlerman, N. (1981) Some basic characteristics

    Google Scholar 

  • of bacterial freezing nuclei. J. Appl. Meteorol, 20, 1013-1019.

    Google Scholar 

  • Zhao, J.-I. and Orser, C.S. (1990) Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Mol. Gen. Genet, 223, 163-166.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Thomson Science

About this chapter

Cite this chapter

Lindow, S.E. (1998). Biological ice nucleation. In: Reid, D.S. (eds) The Properties of Water in Foods ISOPOW 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0311-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0311-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7991-1

  • Online ISBN: 978-1-4613-0311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics