The silage fermentation

  • Michael K. Woolford
  • Günter Pahlow

Abstract

In many countries silage is a major component of the winter diet of ruminant livestock. As a form of conserved forage, silage has gained popularity over hay (Wilkinson & Stark, 1992) because it can generally be made with less dependence on weather and the necessity to harvest crops at a mature stage of growth; moreover, silage can be made from three or more harvests per year, while with hay it is usually only one. Silage, like hay, when well made, can reduce dependence on expensive imported feed concentrates — a factor of prime importance in developing countries.

Keywords

Sugar Lactate Histamine Streptomyces Mannitol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon. (1977) Silage, Ministry of Agriculture, Fisheries and Food, Bulletin 37, 10th edn, London, 87 pp.Google Scholar
  2. Archibald, F.S. & Fridovich, I. (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. Journal of Bacteriology,146, 928–36.Google Scholar
  3. Auerbach, H. & Oldenburg, E. (1994) Dynamik der Entwicklung von Penicillium roqueforti im Silierverlauf. Proceedings of the 16th Mycotoxin-Workshop and Syposium, Hohenheim, LAF-Information, Sonderheft 1, 135–8.Google Scholar
  4. Barry, T.N., Menna, M.E. Di, Webb, P.R. & Parle, J.N. (1980) Some observations on aerobic deterioration in untreated silages and silages made with formaldehyde-containing additives. Journal of the Science of Food and Agriculture, 31, 133–46.CrossRefGoogle Scholar
  5. Beck, R. (1989) Taxonomie und Physiologie der Milchsäurebakterien in Silagen, PhD Thesis, Technische Universität München, 159 pp.Google Scholar
  6. Beck, R., Gross, F. & Beck, T. (1987) Untersuchungen zur Kenntnis der Gärfuttermikroflora. 1. Mitteilung: Die Zusammensetzung der Milchsäurebakterienpopulation bei der Vergärung von Deutschem Weidelgras und Rotklee. Das wirtschaftseigene Futter, 33, 1333.Google Scholar
  7. Beck, T. (1965) Investigations on the ecology and physiology of the silage microflora. Landwirtschaftliche Forschung,18, 243–50.Google Scholar
  8. Beck, T. (1969) The present state of the microbiology of the ensilage and drying of fodder plants. Proceedings of the 3rd General Meeting of the European Grassland Federation, Braunschweig, pp. 207–19.Google Scholar
  9. Beck, T. (1972) The quantitative and qualitative composition of the lactic acid bacteria flora of silage. Landwirtschaftliche Forschung, 27, 55–63.Google Scholar
  10. Beck, T. (1975) Influence of silage additives on aerobic deterioration. Das wirtschaftseigene Futter, 21, 55–65.Google Scholar
  11. Beck, T. & Gross, F. (1964) The causes of differences in the keeping properties of silage. Das wirtschaftseigene Futter, 10, 298–312.Google Scholar
  12. Behrend, U. & Müller, T. (1995) Einfluß der Spätnutzung auf die Entwicklung der Mikroorganismenpopulation von Gräsern. Kongressberichte der VDLUFA-Schriftenreihe, 38, 685–8.Google Scholar
  13. Blakeman, J.P. (1991) Foliar bacterial pathogens: epiphytic growth and interaction on leaves. Journal of Applied Bacteriology, Symposium Supplement,70, 49S–59S.Google Scholar
  14. Bryan-Jones, D.G. (1969) Some aspects of the microbiology of silage. PhD Thesis, University of Edinburgh.Google Scholar
  15. Burmeister, H.R., Hartman, P.A. & Saul, R.A. (1966) Microbiology of ensiled high-moisture corn. Applied Microbiology, 14, 31–4.Google Scholar
  16. Carpintero, M.C., Holding, A.J. & McDonald, P. (1969) Fermentation studies on lucerne. Journal of the Science of Food and Agriculture,20, 677–87.CrossRefGoogle Scholar
  17. Chamberlain, D.G. & Choung, J.-J. (1993) The nutritional value of grass silage. Proceedings of the 10th International Conference on Silage Research,Dublin City University, pp. 131–6.Google Scholar
  18. Condon, S. (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiology Reviews, 46, 269–80.CrossRefGoogle Scholar
  19. Cook, J.E. (1973) The use of additives to improve the stability of maize silage in aerobic conditions. Bulletin of the Maize Development Association, No. 54, August, 13–16.Google Scholar
  20. Crawshaw, R., Thorne, D.M. & Llewellyn, R.H. (1980) The effect of formic and propionic acids on the aerobic deterioration of grass silage in laboratory units. Journal of the Science of Food and Agriculture, 31, 685–94.CrossRefGoogle Scholar
  21. Daeschel, M.A. & Fleming, H.P. (1984) Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiology, 1, 303–13.CrossRefGoogle Scholar
  22. Daeschel, M.A., Andersson, R.E. & Fleming, H.P. (1987) Microbial ecology of fermenting plant materials. FEMS Microbiology Reviews, 46, 357–67.CrossRefGoogle Scholar
  23. Daniel, P., Honig, H., Weise, F. & Zimmer, E. (1970) The action of propionic acid in the ensilage of green fodder. Das wirtschaftseigene Futter, 16, 239–52.Google Scholar
  24. De Vuyst, L. & Vandamme, E.J. (1994) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications,Chapman & Hall, London.Google Scholar
  25. Dewar, W.A., McDonald, P. & Whittenbury, R. (1963) The hydrolysis of grass hemicellulose during ensilage. Journal of the Science of Food and Agriculture,14, 411–17.CrossRefGoogle Scholar
  26. Dickinson, C.H., Austin, B. & Goodfellow, M. (1975) Quantitative and qualitative studies of phylloplane bacteria from Lolium perenne. Journal of General Microbiology,91, 157–66.Google Scholar
  27. Escoula, L. & Bars, J. Le (1973) Studies on the mycoflora of silage. 2. Anaerobic growth of species of fungi. Annales de Recherches Veterinaires, 4, 253–64.Google Scholar
  28. Escoula, L., Bars, J. Le & Larrieu, S. (1972) Studies on the mycoflora of silage. I.Mycoflora of opened silos of gramminaceous fodder. Annales de Recherches Veterinaire, 3, 469–81.Google Scholar
  29. Fauconneau, G. & Jarrige, R. (1954) Organic acids in fodder plants: variations and attempted identification. Proceedings of the European Grassland Conference Paris: The European Productivity Agency of the Organization for European Economic Co-operation,Project No. 224, pp. 278–81.Google Scholar
  30. Fenlon, D.R. (1986) Growth of naturally occurring Listeria spp. in silage: a comparative study of laboratory and farm ensiled grass. Grass and Forage Science, 41, 375–8.CrossRefGoogle Scholar
  31. Fenton, M.P. (1987) An investigation into the sources of lactic acid bacteria in grass silage. Journal of Applied Bacteriology,62, 181–8.Google Scholar
  32. Flam, F. & Vend, B. (1978) The influence of some factors on the incidence of spontaneous fermentation types in extracted sugar beet pulp. Zivocisna Viroka, Praha, 23, 209–17.Google Scholar
  33. Gibson, T. (1965) Clostridia in silage. Journal of Applied Bacteriology, 28, 56–62.Google Scholar
  34. Gibson, T., Stirling, A.C., Keddie, R.M. & Rosenberger, R.F. (1958) Bacteriological changes in silage made at controlled temperatures. Journal of General Microbiology,19, 112–29.Google Scholar
  35. Gibson, T., Stirling, A.C., Keddie, R.M. & Rosenberger, R.F. (1961) Bacteriological changes in silage as affected by laceration of the fresh grass. Journal of Applied Bacteriology, 24, 60–70.Google Scholar
  36. Gordon, F.J. (1992) Improving the feeding value of silage through biological control. Proceedings of the Alltech European Lecture Tour, Birmingham, Alltech UK, pp. 2–17.Google Scholar
  37. Gouet, P. & Chevalier, R. (1966) The evolution of Gram negative microflora in direct-harvested and wilted alfalfa silages. Proceedings of the 10th International Grassland Congress Helsinki,pp. 533–6.Google Scholar
  38. Gouet, P., Contrepois, M., Bousset, J. & Bousset-Fatianoff, N. (1972) Ensilage of gnototoxenic forages. I. Kinetic investigations of the bacterial development in ‘gnotobiotic’ alfalfa, festuca and ryegrass silages. Annales de Biologie Animale Biochimie et Biophysique,12, 159–71.CrossRefGoogle Scholar
  39. Gouet, P., Girardeau, J.P. & Riou, Y. (1977) Inhibition of Listeria monocytogenes by defined lactic microflora in gnotobiotic silages of lucerne, fescue, ryegrass and maize — influence of dry matter and temperature. Animal Feed Science and Technology, 2, 297–305.CrossRefGoogle Scholar
  40. Gross, F. & Beck, T. (1970) Investigations into the prevention of aerobic deterioration process after unloading of silage with propionic acid. Das wirtschaftseigene Futter, 16, 1–14.Google Scholar
  41. Henderson, A.R., McDonald, P. & Woolford, M.K. (1972) Chemical changes and losses during the ensilage of wilted grass treated with formic acid. Journal of the Science of Food and Agriculture,23, 1079–87.CrossRefGoogle Scholar
  42. Henderson, A.R., Ewart, J.M. & Robertson, G.M. (1979) Studies on the aerobic stability of commercial silages. Journal of the Science of Food and Agriculture,30, 223–8.CrossRefGoogle Scholar
  43. Heron, S.J.E., Henderson, A.R. & Cunningham, M. (1987) The effects of inoculation with enterobacteria and proteolytic clostridia on ensiling sterile and non-sterile ryegrass. Proceedings of the Eighth Silage Conference, Institute for Grassland and Animal Production, Hurley, pp. 5–6.Google Scholar
  44. Heron, S.J.E., Henderson, A.R. & McDonald, P. (1988) The effects of inoculation, addition of glucose and mincing on fermentation and proteolysis in ryegrass ensiled in laboratory silos. Animal Feed Science and Technology, 19, 85–96.CrossRefGoogle Scholar
  45. Heron, S.J.E., Wilkinson, J.F. & Duffus, C.M. (1993) Enterobacteria associated with grass and silages. Journal of Applied Bacteriology, 75, 13–17.Google Scholar
  46. Honig, H. (1984) Losses in silage stacks due to CO2-flow-off. Seventh Silage Conference, Summary of Papers, The Queen’s University of Belfast.Google Scholar
  47. Honig, H. & Pahlow, G. (1986) Wirkungsweise und Einsatzgrenzen von Silage-Impfkulturen aus Milchsäurebakterien. 2. Mitteilung: Wirkung von Anwelkgrad, Felddauer und Zuckerzusatz auf das Konservierungsergebnis bei Gras. (Effect and limitation of bacterial silage inoculants. 2nd communication: Effect of DM-content, prewilting conditions and sugar addition on silage quality and losses with grass). Das wirtschaftseigene Futter, 32, 205–28.Google Scholar
  48. Honig, H. & Woolford, M.K. (1980) Changes in silage on exposure to air. Occasional Symposium of the British Grassland Society, No. 11, pp. 76–87.Google Scholar
  49. Jones, R. (1992) Effect of a biological additive on silage quality, effluent production and animal performance. Irish Journal of Agriculture and Food Research, 31, 89.Google Scholar
  50. Jones, R. (1995) Role of biological additives in crop conservation. Proceedings of Alltech 11th Annual Symposium, pp. 465–82.Google Scholar
  51. Jones, R. & Woolford, M.K. (1992) Effect of biological additives on silage quality, effluent production and animal performance. Proceedings of the British Grassland Society Third Annual Conference, Northern Ireland,Session 5, p. 101.Google Scholar
  52. Jonsson, A. & Pahlow, G. (1984) Systematic classification and biochemical characterization of yeasts growing in grass silage inoculated with Lactobacillus cultures. Animal Research and Development, 20, 7–22.Google Scholar
  53. Kalac, P. & Woolford, M.K. (1982) A review of some aspects of possible associations between the feeding of silage and animal health. British Veterinary Journal, 138, 305–20.Google Scholar
  54. Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–24.CrossRefGoogle Scholar
  55. Kaprelyants, A.S. & Kell, D.B. (1996) Do bacteria need to communicate with each other for growth? Trends in Microbiology, 4, 237–42.CrossRefGoogle Scholar
  56. Kempton, A.G. & San Clemente, C.C. (1959) Chemistry and microbiology of forage-crop silage. Applied Microbiology, 7, 362–7.Google Scholar
  57. Kroulik, J.T., Burkey, L.A. & Wiseman, H.G. (1955a) The microbial populations of the green plant and of the cut forage prior to ensiling. Journal of Dairy Science, 38, 256–62.CrossRefGoogle Scholar
  58. Kroulik, J.T., Burkey, L.A., Gordon, C.H., Wiseman, H.G. & Melin, C.G. (1955b) Microbial activities in alfalfa and orchardgrass ensiled under certain conditions. Journal of Dairy Science, 38, 263–72.CrossRefGoogle Scholar
  59. Kuchler, L.F. (1926) Die zeitgemäße Grünfutterkonservierung. Datterer, Freising-München, 525 pp.Google Scholar
  60. Kühbauch, W. (1978) Die Nichtstrukturkohlenhydrate in Gräsern des gemäßigten Klimabereiches, ihre Variationsmöglichkeiten und mikrobielle Verwertung. Landw. Forschung, 31, 251–68.Google Scholar
  61. Langston, C.W. & Bouma, C. (1960a) A study of the micro-organisms from grass silage 1. The cocci. Applied Microbiology, 8, 212–22.Google Scholar
  62. Langston, C.W. & Bouma, C. (1960b) A study of the micro-organisms from grass silage. 2. The lactobacilli. Applied Microbiology, 8, 223–34.Google Scholar
  63. Langston, C.W. & Bouma, C. (1960c) Types and sequence change of bacteria in orchardgrass and alfalfa silages. Journal of Dairy Science, 43, 1575–84.CrossRefGoogle Scholar
  64. Langston, C., Irvin, H.,Gordon, C.H., Bouma, C., Wiseman, H.G., Melin, C.G., Moore, L.A. & McCalmont, J.R. (1958) Microbiology and chemistry of grass silage. United States Department of Agriculture, Technical Bulletin, No. 1187, Washington, 73 pp.Google Scholar
  65. Langston, C.W., Bouma, C. & Conner, R.M. (1962) Chemical and bacteriological changes in grass silage during the early stages of fermentation. I. Bacteriological changes. Journal of Dairy Science, 45, 618–24.CrossRefGoogle Scholar
  66. Lin, C. (1992) Epiphytic microflora on alfalfa and corn; lactic acid bacteria succession during the pre-ensiling periods and the effect of additives on microbial succession and silage fermentation. PhD Thesis, Kansas State University, Manhattan, Kansas.Google Scholar
  67. Lindgren, S.E. & Dobrogosz, W.J. (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 87, 149–64.CrossRefGoogle Scholar
  68. Lindgren, S. & Petterson, K.L. (1990) (eds) Proceedings of the EUROBAC Conference, Uppsala, 1986, Swedish University of Agricultural Science, Grovfoder Grass and Forage Reports, Special issue 3, 188 pp.Google Scholar
  69. Lindgren, S., Petterson, K.L., Jonsson, A., Lingvall, P. & Kaspersson, A. (1985) Silage inoculation: selected strains, temperature, wilting and practical application. Swedish Journal of Agricultural Research,15, 9–18.Google Scholar
  70. Lindgren, S.E., Axelsson, L.T. & McFeeters, R.F. (1990) Anaerobic L-lactate degradation by Lactobacillus plantarum. FEMS Microbiology Letters,66, 209–14.Google Scholar
  71. MacPherson, H.T. & Violante, P. (1966) The influence of pH on the metabolism of arginine and lysine in silage. Journal of the Science of Food and Agriculture,17, 128–30.CrossRefGoogle Scholar
  72. McAllan, A.B. & Phipps, R.H. (1977) The effect of sample date and plant density on the carbohydrate content of forage maize and changes that occur in silage. Journal of Agricultural Science, Cambridge, 89, 589–97.CrossRefGoogle Scholar
  73. McDonald, P. & Henderson, A.R. (1962) Buffering capacity of herbage samples as a factor in ensilage. Journal of the Science of Food and Agriculture,13, 395–400.CrossRefGoogle Scholar
  74. McDonald, P., Stirling, A.C., Henderson, A.R., Dewar, W.A., Stark, G.H., Davie, W.G., Macpherson, H.T., Reid, A.M. & Slater, J. (1960) Studies on ensilage. Edinburgh School of Agriculture, Technical Bulletin No. 24, 83 pp.Google Scholar
  75. McDonald, P., Stirling, A.C., Henderson, A.R. & Whittenbury, R. (1962) Fermentation studies on wet herbage. Journal of the Science of Food and Agriculture, 13, 581–90.CrossRefGoogle Scholar
  76. McDonald, P., Stirling, A.C., Henderson, A.R. & Whittenbury, R. (1965) Fermentation studies on red clover. Journal of the Science of Food and Agriculture,16, 549–57.CrossRefGoogle Scholar
  77. McDonald, P., Henderson, A.R. & Ralton, I. (1973) Energy changes during ensilage. Journal of the Science of Food and Agriculture, 24, 827–34.CrossRefGoogle Scholar
  78. McDonald, P., Henderson, A.R. & Heron, S.J.E. (1991) The Biochemistry of Silage, 2nd edn, Chalcombe Publications, Marlow, Bucks.Google Scholar
  79. Man, J.C. de (1957a) Some observations on propionic acid fermentation in silage. Antonie van Leeuwenhoek, 23, 81–6.CrossRefGoogle Scholar
  80. Man, J.C. de (1957b) The fermentation of cell wall substances in grass silage and in potato pulp. Antonie van Leeuwenhoek, 23, 87–96.CrossRefGoogle Scholar
  81. Mayne, C.S. & Steen, R.W.S. (1990) Recent research on silage additives for milk and beef production. Annual Report No. 63. Agricultural Research Institute, Northern Ireland (1989/ 90), pp. 31–42.Google Scholar
  82. Merry, R.J., Cussen-MacKenna, R.F. & Jones, R. (1993) Biological silage additives. Ciencia e Investigation Agraria,20, 1–29.Google Scholar
  83. Middelhoven, W.J. & Van Baalen, A.H.M. (1988) Development of the yeast flora of whole-crop maize during ensiling and during subsequent aerobiosis. Journal of the Science of Food and Agriculture, 42, 199–207.CrossRefGoogle Scholar
  84. Moon, N.J. (1981) Effect of inoculation of vegetable processing wastes with Lactobacillus plantarum on silage fermentation. Journal of the Science of Food and Agriculture,32, 675–83.CrossRefGoogle Scholar
  85. Moon, N.J. & Ely, L.O. (1979) Identification and properties of yeasts associated with the aerobic deterioration of wheat and alfalfa silages. Mycopathologia, 69, 153–6.CrossRefGoogle Scholar
  86. Moon, N.J., Ely, L.O. & Sudweeks, E.M. (1980) Aerobic deterioration of wheat, lucerne and maize silages prepared with Lactobacillus acidophilus and a Candida spp. Journal of Applied Bacteriology, 49, 75–87.Google Scholar
  87. Moon, N.J., Moon, L.C., Ely, L.O. & Parker, J.A. (1981) Lactic acid bacteria active during the fermentation of wheat silage in small scale silos. European Journal of Applied Microbiology and Biotechnology,13, 248–50.CrossRefGoogle Scholar
  88. Muck, R.E. (1989) Initial bacterial numbers on lucerne prior to ensiling. Grass and Forage Science, 44, 19–25.CrossRefGoogle Scholar
  89. Mukamolova, G.V., Kaprelyants, A.S. & Kell, D.B. (1995) Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie van Leeuwenhoek, 163, 289–95.CrossRefGoogle Scholar
  90. Müller, M. & Lier, D. (1994) Fermentation of fructans by epiphytic lactic acid bacteria. Journal of Applied Bacteriology, 76, 406–11.Google Scholar
  91. Müller, M., Müller, T. & Seyfarth, W. (1993) Veränderungen der mikrobiellen Epiphytenflora beim Welken von Futtergräsern und deren mögliche Auswirkungen auf den Siliererfolg. Agribiological Research, 46, 29–39.Google Scholar
  92. Müller, T., Behrend, U. & Müller, M. (1995) Antagonistic activity in plant-associated lactic acid bacteria: Emerging Principles and Applications, in Beijerinck Centennial, Microbial Physiology and Gene Regulation (eds W.A. Scheffers, & J.P. van Dijken), Book of Abstracts, Delft University Press, pp. 447–8.Google Scholar
  93. Mundt, J.O. (1963) Occurrence of enterococci in animals in a wild environment. Applied Microbiology, 11, 136–40.Google Scholar
  94. Nilsson, G. & Nilsson, P.E. (1956) The microflora on the surface of some fodder plants at different stages of maturity. Archiv für Mikrobiologie,24, 412–22.CrossRefGoogle Scholar
  95. Ohyama, Y., Masaki, S. & Morichi, T. (1973) Effects of temperature and glucose addition on the process of silage fermentation. Japanese Journal of Zootechnical Sciences,44, 59–67.Google Scholar
  96. Ohyama, Y., Hara, S. & Masaki, S. (1980) Analysis of the factors affecting aerobic deterioration of grass silages. Occasional Symposium of the British Grassland Society,No. 11, pp. 25761.Google Scholar
  97. Orla-Jensen, S., Orla-Jensen, A.D. & Kjaer, A. (1947) On the ensiling of lucerne by means of lactic acid fermentation. Journal of Microbiology and Serology,12, 97–114.Google Scholar
  98. Ostling, C.E. & Lindgren, S. (1993) Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. Journal of Applied Bacteriology,75, 18–24.Google Scholar
  99. Ostling, C.E. & Lindgren, S. (1995) Influences of enterobacteria on the fermentation and aerobic stability of grass silages. Grass and Forage Science, 50, 41–7.CrossRefGoogle Scholar
  100. Pahlow, G. (1981) Estimation of the aerobic stability of silages by measuring the biochemical oxygen demand. 6th Silage Conference, Edinburgh, Summary of Papers, pp. 65–6.Google Scholar
  101. Pahlow, G. (1991) Role of microflora in forage conservation, in Forage Conservation Towards 2000 (eds G. Pahlow & H. Honig), Landbauforschung Völkenrode, Sonderheft, 123, pp. 26–36.Google Scholar
  102. Pahlow, G. & Honig, H. (1986) Wirkungsweise und Einsatzgrenzen von Silage-Impfkulturen aus Milchsäurebakterien. 1. Mitteilung (Effect and limitation of bacterial silage inoculants. 1st communication). Das wirtschaftseigene Futter, 32, 20–35.Google Scholar
  103. Pahlow, G. & Honig, H. (1991) (eds) Proceedings of a Conference on Forage Conservation Towards 2000. Landbauforschung Völkenrode, Sonderheft, 123, 470 pp.Google Scholar
  104. Pahlow, G. & Honig, H. (1993) Dry matter losses during storage and unloading as influenced by different types of silage additives. Proceedings of the 10th International Conference on Silage Research, Dublin City University, pp. 118–19.Google Scholar
  105. Pahlow, G. & Müller, Th. (1990) Determination of epiphytic micro-organisms on grass as influenced by harvesting and sample preparation. Proceedings of the Ninth Silage Conference, Faculty of Agriculture, University of Newcastle-upon-Tyne, pp. 23–24.Google Scholar
  106. Pahlow, G. & Weissbach, F. (1996) Effect of numbers of epiphytic lactic acid bacteria (LAB) and of inoculation on the rate of pH-decline in direct cut and wilted grass silages. Proceedings of the Eleventh International Silage Conference, Aberystwyth, pp. 104–5.Google Scholar
  107. Pahlow, G., Müller, T. & Lier, D. (1995) Einfluß des Ernteverfahrens auf die Nachweisbarkeit epiphytischer Laktobakterien von Futterpflanzen. (Recovery of epiphytic lactic acid bacteria from forages as influenced by harvesting method) Das wirtschaftseigene Futter, 41, 306–26.Google Scholar
  108. Palsson, P.A. (1963) Relation of silage feeding to listeric infection in sheep. Proceedings of the 2nd Symposium on Listeric Infection in Sheep, Bozeman, Montana, pp. 73–84.Google Scholar
  109. Pelhate, J. (1977) Maize silage: incidence of moulds during conservation. Folio Veterinaria Latina, 7, 1–16.Google Scholar
  110. Playne, M.J. & McDonald, P. (1966) The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture,17, 264–8.CrossRefGoogle Scholar
  111. Playne, M.J., Stirling, A.C. & McDonald, P. (1967) Changes in organic acid composition during incubation of aseptically-grown grass. Journal of the Science of Food and Agriculture,18, 19–20.CrossRefGoogle Scholar
  112. Rooke, J.A. (1990) The numbers of epiphytic bacteria on grass at ensilage on commercial farms. Journal of the Science of Food and Agriculture,51, 525–33.CrossRefGoogle Scholar
  113. Rosenberger, R.F. (1956) The isolation and cultivation of the obligate anaerobes from silage. Journal of Applied Bacteriology,19, 173–80.Google Scholar
  114. Roszak, D.B. & Colwell, R.R. (1987a) Survival strategies of bacteria in the natural environment. Microbiological Reviews, 51, 365–79.Google Scholar
  115. Roszak, D.B. & Colwell, R.R. (1987b) Metabolic activity of bacterial cells enumerated by direct viable count. Applied and Environmental Microbiology, 53, 2889–93.Google Scholar
  116. Ruser, B. (1989) Erfassung und Identifizierung des epiphytischen Milchsäurebakterienbesatzes auf Gras und Mais in Abhängigkeit von Standort, Sorte, Entwicklungsstadium sowie Ernte-und Klimaeinflüssen. Landbauforschung Völkenrode, Sonderheft, 103, 131 pp.Google Scholar
  117. Satter, L.D., Muck, R.E., Jones, B.A., Dhiman, T.R., Woodford, J.A. & Wacek, C.M. (1991) Efficacy of bacterial inoculants for lucerne silage, in Forage Conservation Towards 2000 (eds G. Pahlow & H. Honig), Landbauforschung Völkenrode, Sonderheft, 123, pp. 342–3.Google Scholar
  118. Schukking, S. (1974) The history of silage-making. Stikstof, 19, 2–11.Google Scholar
  119. Seale, D.R. (1986) Bacterial inoculants as silage additives. Journal of Applied Bacteriology, Symposium Supplement, 9S–26S.Google Scholar
  120. Seale, D.R. (1987) Bacteria and enzymes as products to improve silage preservation, in Developments in Silage, Chalcombe Publications, Marlow, pp. 47–61.Google Scholar
  121. Smith, L.H. (1962) Theoretical carbohydrate requirement for alfalfa silage production. Agronomic Journal, 54, 291–3.CrossRefGoogle Scholar
  122. Sneath, P.H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. (1986) Bergey’s Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins.Google Scholar
  123. Spoelstra, S.F. (1983) Inhibition of clostridial growth by nitrate during the early phase of silage fermentation. Journal of the Science of Food and Agriculture,34, 145–52.CrossRefGoogle Scholar
  124. Spoelstra, S.F. (1991) Chemical and biological additives in forage conservation, in Forage Conservation Towards 2000 (eds G. Pahlow & H. Honig), Landbauforschung Völkenrode, Sonderheft, 123, pp. 48–70.Google Scholar
  125. Spoelstra, S.F. & Hindle, V.A. (1990) Inoculating grass for silage by spraying the standing crop, in Proceedings of the EUROBAC Conference, Uppsala, 1986 (eds S. Lindgren & K. Lunden Petterson), Grovfoder Grass and Forage Reports, Special issue, 3, pp. 115–25.Google Scholar
  126. Spoelstra, S.F., Courtin, M.G. & van Beers, J.A.C. (1988) Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage. Journal of Agricultural Science, Cambridge, 111, 127–32.CrossRefGoogle Scholar
  127. Stirling, A.C. (1951) Bacteriological changes in experimental laboratory silage. Proceedings of the Society for Applied Bacteriology,14, 151–6.Google Scholar
  128. Stirling, A.C. (1953) Lactobacilli and silage-making. Proceedings of the Society for Applied, Bacteriology, 16, 27–9.Google Scholar
  129. Stirling, A.C. & Whittenbury, R. (1963) Sources of lactic acid bacteria occurring in silage. Journal of Applied Bacteriology,26, 86–92.Google Scholar
  130. Watson, S.J. & Nash, M.J. (1960) The Conservation of Grass and Forage Crops, Oliver & Boyd, Edinburgh, p. 758.Google Scholar
  131. Weise, F. (1963) A report on basic research in silage-making. 2. The bacteriological picture of a grass silage. Landbauforschung Völkenrode, 13, 111–16.Google Scholar
  132. Weise, F. (1967) Characteristic differences in the development of the silage flora in direct-cut and pre-wilted silage. Tagungsberichte der Deutschen Akademie für Landwirtschaftswissenschaften zu Berlin, Nr 92, pp. 93–102.Google Scholar
  133. Weise, F. (1968) The influence of chopping on the fermentation process in direct-cut silage. Das wirtschaftseigene Futter, 14, 294–303.Google Scholar
  134. Weise, F. & Honig, H. (1975) The effect of different periods of pre-wilting on the course of fermentation in meadow fescue (Festuca pratensis). Das wirtschaftseigene Futter,21, 1024.Google Scholar
  135. Weissbach, F. & Gordon, F. (1992) Grassland based animal production in Europe. Proceedings of the 14th General Meeting of the European Grassland Federation,Lahti, Finland, pp. 1–18.Google Scholar
  136. Weissbach, F. & Haacker, K. (1988) Über die Ursachen der Buttersäuregärung in Silagen aus Getreideganzpflanzen. Das wirtschaftseigene Futter, 34, 88–99.Google Scholar
  137. Weissbach, F. & Honig, H. (1996) Über die Vorhersage and Steuerung des Gärungsverlaufs bei der Silierung von Grünfutter aus extensivem Anbau. Landbauforschung Völkenrode, 1, 10–17.Google Scholar
  138. Weissbach, F., Honig, H. & Kaiser, E. (1993) The effect of nitrate on the silage fermentation. Proceedings of the 10th International Conference on Silage Research,Dublin City University, pp. 122–3.Google Scholar
  139. Whittenbury, R. (1963) An investigation of the lactic acid bacteria. PhD Thesis, University of Edinburgh.Google Scholar
  140. Whittenbury, R. (1968) Microbiology of grass silage. Process Biochemistry, February, 27–31.Google Scholar
  141. Whittenbury, R., McDonald, P. & Bryan-Jones, D.G. (1967) A short review of some biochemical and microbiological aspects of ensilage. Journal of the Science of Food and Agriculture, 18, 441–4CrossRefGoogle Scholar
  142. Wieringa, G.W. (1962) The influence of chemical composition of grass on its suitability for ensiling. Landbouwkundig Tijdschrift, Wageningen, 74, 261–7.Google Scholar
  143. Wignall, J. & Tatterson, I. (1976) Fish silage. Process Biochemistry, December, 17–19.Google Scholar
  144. Wilkins, R.J., Wilson, R.F. & Woolford, M.K. (1974) The effects of formaldehyde on the silage fermentation. Vaxtödling 29,Proceedings of the 5th General Meeting of the European Grassland Federation, Uppsala (1973), pp. 197–201.Google Scholar
  145. Wilkinson, J.M. (1978) The ensiling of forage maize: effects on composition and nutritive value, in Forage Maize (eds E.S. Bunting, B.E. Pain, R.H. Phipps, I.M. Wilkinson & R.E. Gunn), Agricultural Research Council, London, pp. 201–37.Google Scholar
  146. Wilkinson, J.M. & Stark, B.A. (1992) Silage in Western Europe, A Survey of 17 Countries, Chalcombe Publications, Marlow.Google Scholar
  147. Wilson, R.F., Woolford, M.K., Cook, J.E. & Wilkinson, J.M. (1979) Acrylic acid and sodium acrylate as additives for silage. Journal of Agricultural Science, Cambridge,92, 409–15.CrossRefGoogle Scholar
  148. Wirahadikusumah, S., Rajala, O., Lindgren, S. & Nilsson, R. (1972) Development of lactic acid bacteria during early stages of fermentation in fish silage. Archiv für Mikrobiologie, 82, 95–100.CrossRefGoogle Scholar
  149. Wood, W.A. (1961) Fermentation of carbohydrates and related compounds, in The Bacteria (eds I.C. Gunsalus & R.Y. Stanier), Academic Press, New York, pp. 125–60.Google Scholar
  150. Woolford, M.K. (1975a) The significance of Propionibacterium spp. and Micrococcus lactilyticus to the ensiling process. Journal of Applied Bacteriology, 39, 301–6.Google Scholar
  151. Woolford, M.K. (1975b) Microbiological screening of the straight chain fatty acids (C1–12) as potential silage additives. Journal of the Science of Food and Agriculture, 26, 219–28.CrossRefGoogle Scholar
  152. Woolford, M.K. (1975c) Microbiological screening of food preservatives cold sterilants and specific antimicrobial agents as potential silage additives. Journal of the Science of Food and Agriculture, 26, 229–37.CrossRefGoogle Scholar
  153. Woolford, M.K. (1976) A preliminary investigation into the role of yeasts in the ensiling process. Journal of Applied Bacteriology, 41, 29–36.Google Scholar
  154. Woolford, M.K. (1977) Studies on the significance of three Bacillus species to the ensiling process. Journal of Applied Bacteriology, 43, 447–52.Google Scholar
  155. Woolford, M.K. (1978a) The aerobic deterioration of silage. Agriculture Research Council Research Reviews, 4, 8–12.Google Scholar
  156. Woolford, M.K. (1978b) Antimicrobial effects of mineral acids, organic acids, salts and sterilizing agents in relation to their potential as silage additives. Journal of the British Grassland Society, 33, 131–6.CrossRefGoogle Scholar
  157. Woolford, M.K. (1984) The Silage Fermentation. Microbiological Series, 14, Marcel Dekker, Inc., New York, Basel.Google Scholar
  158. Woolford, M.K. (1990) The detrimental effects of air in silage. Journal of Applied Bacteriology, 68, 101–16.Google Scholar
  159. Woolford, M.K. & Cook, J.E. (1978) A note on the effect on the aerobic deterioration of maize silage on the manipulation of the microflora by means of antibiotics. Animal Feed Science and Technology, 3, 89–94.CrossRefGoogle Scholar
  160. Woolford, M.K. & Wilkie, A.C. (1984) Investigations into the role of specific micro-organisms in the aerobic deterioration of silage. Journal of Agricultural Science, Cambridge,102, 97–104.CrossRefGoogle Scholar
  161. Woolford, M.K., Honig, H. & Fenlon, J.S. (1977) Studies on the aerobic deterioration of silage using a small-scale technique. 1. A description of the technique and statistical appraisal. Das Wirtschaftseigene Futter, 23, 10–22.Google Scholar
  162. Woolford, M.K., Honig, H. & Fenlon, J.S. (1978) Studies on the aerobic deterioration of silage using a small-scale technique. 2. The microbiological, physical and chemical changes during the aerobic deterioration of corn silage. Das Wirtschaftseigene Futter, 24, 125–39.Google Scholar
  163. Woolford, M.K., Honig, H. & Fenlon, J.S. (1979) Studies on the aerobic deterioration of silage using a small-scale technique. 3. The microbiological, physical and chemical changes during the aerobic deterioration of direct-cut and wilted grass silage made in the absence and presence of air. Das wirtschaftseigene Futter, 25, 158–77.Google Scholar
  164. Woolford, M.K., Bolsen, K.K. & Peart, L.A. (1982) Studies on the aerobic deterioration of whole-crop cereal silage. Journal of Agricultural Science, Cambridge, 98, 529–35.CrossRefGoogle Scholar
  165. Zelter, S.-Z. (1960) Fermentation behaviour of lucerne ensiled by different methods. Proceedings of the 8th International Grassland Congress, Reading, pp. 505–10.Google Scholar
  166. Zimmer, E. (1969) Biochemische Grundlagen der Einsäuerung. Proceedings of the 3rd Congress of the European Grassland Federation, Braunschweig, pp. 113–25.Google Scholar
  167. Zimmer, E. (1989) Forage conservation and physico-chemical conversion. XVI International Grassland Congress, Nice, pp. 1825–28.Google Scholar

Copyright information

© Thomson Science 1998

Authors and Affiliations

  • Michael K. Woolford
  • Günter Pahlow

There are no affiliations available

Personalised recommendations