Skip to main content

Interior Point Methods for Combinatorial Optimization

  • Chapter
Handbook of Combinatorial Optimization

Abstract

Interior-point methods, originally invented in the context of linear programming, have found a much broader range of applications, including discrete problems that arise in computer science and operations research as well as continuous computational problems arising in the natural sciences and engineering. This chapter describes the conceptual basis and applications of interior-point methods for discrete problems in computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.P. Adams and T.A. Johnson. Improved linear programming-based lower bounds for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems, volume 16 of DIMA CS Series on Discrete Mathematics and Theoretical Computer Science, pages 43–75. American Mathematical Society, 1994.

    Google Scholar 

  2. I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. Data structures and programming techniques for the implementation of Karmarkar’s algorithm. ORSA Journal on Computing, 1: 84–106, 1989.

    MATH  Google Scholar 

  3. I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. An implementation of Karmarkar’s algorithm for linear programming. Mathematical Programming, 44: 297–335, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  4. Navindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  5. F. Alizadeh. Optimization over positive semi-definite cone: Interior-point methods and combinatorial applications. In P.M. Pardalos, editor, Advances in Optimization and Parallel Computing, pages 1–25. North—Holland, Amsterdam, 1992.

    Google Scholar 

  6. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization.SIAM Journal on Optimization, 5 (1): 13–51, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. D. Andersen, J. Gondzio, C. Mészâros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor,Interior Point Methods in Mathematical Programming, chapter 6. Kluwer Academic Publishers, 1996.

    Google Scholar 

  8. D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that uses analytic centers. Mathematical Programming, 69: 1–43, 1995.

    MATH  MathSciNet  Google Scholar 

  9. O. Bahn, O. Du Merle, J. L. Goffin, and J. P. Vial. A cutting plane method from analytic centers for stochastic programming Mathematical Programming, 69: 45–73, 1995.

    MATH  MathSciNet  Google Scholar 

  10. E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming, 58: 295–324, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations Research Letters, 19: 1–9, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. E.R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming problems. Mathematical Programming, 36: 174–182, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming, I. Affine and projective scaling trajectories. Transactions of the American Mathematical Society, 314: 499–526, 1989.

    MATH  MathSciNet  Google Scholar 

  14. D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming, II. Legendre transform coordinates and central trajectories. Transactions of the American Mathematical Society, 314: 527–581, 1989.

    Google Scholar 

  15. M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network Flows. Wiley, New York, NY, 1990.

    Google Scholar 

  16. S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. Technical report, Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242, September 1997.

    Google Scholar 

  17. B. Borchers. CSDP, a C library for semidefinite programming. Technical report, Mathematics Department, New Mexico Tech, Socorro, NM 87801, March 1997.

    Google Scholar 

  18. B. Borchers, S. Joy, and J. E. Mitchell. Three methods to the exact solution of max-sat problems. Talk given at IN-FORMS Conference, Atlanta, 1996. Slides available from the URL http: // www.nmt.edu/borchers/atlslides.ps, 1996.

    Google Scholar 

  19. B. Borchers and J. E. Mitchell. Using an interior point method in a branch and bound algorithm for integer programming Technical Report 195, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, March 1991. Revised July 7, 1992.

    Google Scholar 

  20. C. Chevalley. Theory of Lie Groups. Princeton University Press, Princeton, New Jersey, 1946.

    Google Scholar 

  21. T. Christof and G. Reinelt. Parallel cutting plane generation for the tsp (extended abstract). Technical report, IWR Heidelberg, Germany, 1995.

    Google Scholar 

  22. G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In Tj. C. Koopmans, editor, Activity Analysis of Production and Allocation, pages 339–347. Wiley, New York, 1951.

    Google Scholar 

  23. G.B. Dantzig. Application of the simplex method to a transportation problem. In T.C. Koopsmans, editor, Activity Analysis of Production and Allocation. John Wiley and Sons, 1951.

    Google Scholar 

  24. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7: 201–215, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. de Silva and D. Abramson. A parallel interior point method and its application to facility location problems. Technical report, School of Computing and Information Technology, Griffith University, Nathan, QLD 4111, Australia, 1995.

    Google Scholar 

  26. C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states of two–dimensional ±JIsing spin glasses. Journal of Statistical Physics, 84: 1363–1371, 1996.

    Article  Google Scholar 

  27. M. Deza and M. Laurent. Facets for the cut cone I. Mathematical Programming, 56: 121–160, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Deza and M. Laurent. Facets for the cut cone II: Clique-web inequalities. Mathematical Programming, 56: 161–188, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  29. I. I. Dikin. Iterative solution of problems of linear and quadratic programming. Doklady Akademiia Nauk SSSR, 174:747–748, 1967. English Translation: Soviet Mathematics Doklady, 1967, Volume 8, pp. 674–675.

    MATH  Google Scholar 

  30. D. Z. Du, J. Gu, and P. M. Pardalos, editors. Satisfiability Problem: Theory and Applications, volume 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1997.

    Google Scholar 

  31. Ding-Zhu Du and Panos M. Pardalos, editors. Network Optimization Problems: Algorithms, Applications and Complexity. World Scientific, 1993.

    Google Scholar 

  32. J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of Research National Bureau of Standards, 69B: 125–130, 1965.

    MathSciNet  Google Scholar 

  33. A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior-point methods. SIAM Review, 36: 45–72, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley and Sons, New York, 1968. Reprinted as Volume 4 of the SIAM Classics in Applied Mathematics Series, 1990.

    Google Scholar 

  35. C. Floudas and P. Pardalos. Recent Advances in Global Optimization. Princeton Series in Computer Science. Princeton University Press, 1992.

    Google Scholar 

  36. C. Floudas and P. Pardalos. State of the Art in Global Optimization: Computational Methods and Applications. Kluwer Academic Publishers, 1996.

    Google Scholar 

  37. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1990.

    Google Scholar 

  38. K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming Technical report, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, January 1997.

    Google Scholar 

  39. A. George and M. Heath. Solution of sparse linear least squares problems using Givens rotations. Linear Algebra and Its Applications, 34: 69–83, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  40. Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming J. Assoc. Comput. Mach., 42: 1115–1145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  41. J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommodity network flow problems by the analytic center cutting plane method. Mathematical Programming, 76: 131–154, 1997.

    MATH  MathSciNet  Google Scholar 

  42. J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization with the projective algorithm. Management Science, 38: 284–302, 1992.

    Article  MATH  Google Scholar 

  43. J.-L. Coffin, Z.-Q. Luo, and Y. Ye. Further complexity analysis of a primal-dual column generation algorithm for convex or quasiconvex feasibility problems. Technical report, Faculty of Management, McGill University, Montréal, Québec, Canada, November 1993.

    Google Scholar 

  44. J.-L. Goffin, Z.-Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for convex or quasiconvex problems. In Large Scale Optimization: The State of the Art. Kluwer Academic Publishers, 1993.

    Google Scholar 

  45. G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 1983.

    Google Scholar 

  46. R. E. Gomory. Outline of an algorithm for integer solutions to linear programs Bulletin of the American Mathematical Society, 64: 275–278, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Grötschel and O. Holland. Solution of large-scale travelling salesman problems. Mathematical Programming, 51 (2): 141–202, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering problem. Operations Research, 32: 1195–1220, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer–Verlag, Berlin, Germany, 1988.

    Google Scholar 

  50. G.M. Guisewite. Network problems. In Reiner Horst and Panos M. Pardalos, editors, Handbook of global optimization. Kluwer Academic Publishers, 1994.

    Google Scholar 

  51. G.M. Guisewite and P.M. Pardalos. Minimum concave cost network flow problems: Applications, complexity, and algorithms. Annals of Operations Research, 25: 75–100, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  52. C. Helmberg. Fixing variables in semidefinite relaxations. Technical Report SC–96–43, Konrad–Zuse–Zentrum fuer Informationstechnik, Berlin, December 1996.

    Google Scholar 

  53. C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz. Combining semidefinite and polyhedral relaxations for integer programs. In E. Balas and J. Clausen, editors, Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, volume 920, pages 124–134. Springer, 1995.

    Google Scholar 

  54. C. Helmberg and F. Rendl. Solving quadratic (0,1-problems by semidefinite programs and cutting planes. Technical Report SC-9535, Konrad-Zuse-Zentrum fuer Informationstechnik, Berlin, 1995.

    Google Scholar 

  55. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. Technical Report SC–97–37, Konrad-Zuse-Zentrum fuer Informationstechnik, Berlin, August 1997. Revised: October 1997.

    Google Scholar 

  56. C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior point method for semidefinite programming. SIAM Journal on Optimization, 6: 342–361, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  57. C. Helmberg, F. Rendl, and R. Weismantel. Quadratic knapsack relaxations using cutting planes and semidefinite programming. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, volume 1084, pages 175–189. Springer, 1996.

    Google Scholar 

  58. F.L. Hitchcock. The distribution of product from several sources to numerous facilities. Journal of Mathematical Physics, 20: 224–230, 1941.

    MathSciNet  Google Scholar 

  59. K. L. Hoffman and M. Padberg. Improving LP-representation of zero-one linear programs for branch-and-cut. ORSA Journal on Computing, 3 (2): 121–134, 1991.

    MATH  Google Scholar 

  60. E. Housos, C. Huang, and L. Liu. Parallel algorithms for the AT&T KORBX System. AT&T Technical Journal, 68: 37–47, 1989.

    MathSciNet  Google Scholar 

  61. D. S. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1996.

    Google Scholar 

  62. A. Joshi, A.S. Goldstein, and P.M. Vaidya. A fast implementation of a path-following algorithm for maximizing a linear function over a network polytope. In David S. Johnson and Catherine C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, volume 12 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 267–298. American Mathematical Society, 1993.

    Google Scholar 

  63. M. Jünger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane algorithms in combinatorial optimization. In Combinatorial Optimization: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 111–152. AMS, 1995.

    Google Scholar 

  64. J.A. Kaliski and Y. Ye. A decomposition variant of the potential reduction algorithm for linear programming. Management Science, 39: 757–776, 1993.

    Article  MATH  Google Scholar 

  65. A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. Computational experience with an interior point algorithm on the Satisfiability problem. Annals of Operations Research, 25: 4358, 1990.

    Article  MathSciNet  Google Scholar 

  66. A.P. Kamath and N. Karmarkar. A continuous method for computing bounds in integer quadratic optimization problems. Journal of Global Optimization, 2: 229–241, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  67. A.P. Kamath and N. Karmarkar. An O(nL)iteration algorithm for computing bounds in quadratic optimization problems. In P.M. Pardalos, editor, Complexity in Numerical Optimization, pages 254–268. World Scientific, Singapore, 1993.

    Chapter  Google Scholar 

  68. A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Re-sende. A continuous approach to inductive inference. Mathematical Programming, 57: 215–238, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  69. A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous approach to inductive inference. Mathematical Programming, 57:215–238, 1992.

    Google Scholar 

  70. A.P. Kamath, N. Karmarkar, K G Ramakrishnan, and M.G.C. Re-sende. An interior point approach to Boolean vector function synthesis. In Proceedings of the 36th MSCAS, pages 185–189, 1993.

    Google Scholar 

  71. A.P. Kamath, N. Karmarkar, N. Ramakrishnan, and M.G.C. Resende. Computational experience with an interior point algorithm on the Satisfiability problem. Annals of Operations Research, 25: 43–58, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  72. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatoriaa, 4: 373–395, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  73. N. Karmarkar. An interior-point approach for NP-complete problems. Contemporary Mathematics, 114:297–308, 1990.

    Google Scholar 

  74. N. Karmarkar. An interior-point approach to NP-complete problems. In Proceedings of the First Integer Programming and Combinatorial Optimization Conference,pages 351–366,University of Waterloo,1990.

    Google Scholar 

  75. N. Karmarkar. A new parallel architecture for sparse matrix computation based on finite projective geometries. In Proceedings of Super-computing 91, pages 358–369. IEEE Computer Society,1991.

    Google Scholar 

  76. N. Karmarkar, J. Lagarias, L. Slutsman, and P. Wang. Power series variants of Karmarkar–type algorithms. AT&T Technical Journal, 68: 20–36, 1989.

    MATH  MathSciNet  Google Scholar 

  77. N. Karmarkar, M.G.C. Resende, and K. Ramakrishnan. An interior point algorithm to solve computationally difficult set covering problems. Mathematical Programming, 52: 597–618, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  78. N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior point approach to the maximum independent set problem in dense random graphs. In Proceedings of the XIII Latin American Conference on Informatics, volume 1, pages 241–260, Santiago, Chile, July 1989.

    Google Scholar 

  79. N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algorithm for large scale linear programming. Mathematical Programming, 52: 555–586, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  80. J.L. Kennington and R.V. Helgason. Algorithms for network programming. John Wiley and Sons, New York, NY, 1980.

    Google Scholar 

  81. L. G. Khachiyan. A polynomial algorithm in linear programming Doklady Akademiia Nauk SSSR, 224:1093–1096, 1979. English Translation: Soviet Mathematics Doklady, Volume 20, pp. 1093–1096.

    Google Scholar 

  82. M. Kojima, S. Shindoh, and S. Hara. Interior point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization, 7: 86–125, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  83. J.B. Kruskal. On the shortest spanning tree of graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7: 48–50, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  84. Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 1976.

    MATH  Google Scholar 

  85. E. K. Lee and J. E. Mitchell. Computational experience in nonlinear mixed integer programming. In Proceedings of Symposium on Operations Research, August 1996, Braunschweig, Germany, pages 95–100. Springer–Verlag, 1996.

    Google Scholar 

  86. K. Levenberg. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2: 164–168, 1944.

    MATH  MathSciNet  Google Scholar 

  87. Y. Li, P.M. Pardalos, K.G. Ramakrishnan, and M.G.C. Resende. Lower bounds for the quadratic assignment problem. Annals of Operations Research, 50: 387–410, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  88. Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems, volume 16 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages 237–262. American Mathematical Society, 1994.

    Google Scholar 

  89. L. Lovasz. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 25: 1–7, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  90. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computational state of the art. ORSA Journal on Computing, 6(1):1–14, 1994. See also the following commentaries and rejoinder.

    Google Scholar 

  91. D. Marquardt. An algorithm for least–squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11: 431–441, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  92. S. Mehrotra. On the implementation of a (primal-dual) interior point method. SIAM Journal on Optimization, 2 (4): 575–601, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  93. S. Mehrotra and J. Wang. Conjugate gradient based implementation of interior point methods for network flow problems. In L. Adams and J. Nazareth, editors, Linear and Nonlinear Conjugate Gradient Related Methods. SIAM, 1995.

    Google Scholar 

  94. J. E. Mitchell. Interior point algorithms for integer programming. In J. E. Beasley, editor, Advances in Linear and Integer Programming, chapter 6, pages 223–248. Oxford University Press, 1996.

    Google Scholar 

  95. J. E. Mitchell. Interior point methods for combinatorial optimization. In Tamâ,s Terlaky, editor, Interior Point Methods in Mathematical Programming, chapter 11, pages 417–466. Kluwer Academic Publishers, 1996.

    Google Scholar 

  96. J. E. Mitchell. Computational experience with an interior point cutting plane algorithm. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, February 1997. Revised: April 1997.

    Google Scholar 

  97. J. E. Mitchell. Fixing variables and generating classical cutting planes when using an interior point branch and cut method to solve integer programming problems. European Journal of Operational Research, 97: 139–148, 1997.

    Article  MATH  Google Scholar 

  98. J. E. Mitchell. An interior point cutting plane algorithm for Ising spin glass problems. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, July 1997.

    Google Scholar 

  99. J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Annals of Operations Research, 62: 253–276, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  100. J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, September 1997.

    Google Scholar 

  101. J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using Karmarkar’s algorithm. Mathematical Programming, 56: 245–284, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  102. R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part I: Linear programming. Mathematical Programming, 44 (1): 27–41, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  103. R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Mathematics of Operations Research, 15 (2): 191–214, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  104. J.J. Moré and D.C. Sorenson. Computing a trust region step. SIAM J. of Stat. Sci. Comput., 4: 553–572, 1983.

    Article  MATH  Google Scholar 

  105. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley, New York, 1988.

    MATH  Google Scholar 

  106. Y. E. Nesterov and A. S. Nemirovsky. Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM Publications. SIAM, Philadelphia, USA, 1993.

    Google Scholar 

  107. Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for convex programming. Mathematics of Operations Research, 22: 1–42, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  108. M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33 (1): 60–100, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  109. R. Pai, N. K. Karmarkar, and S. S. S. P. Rao. A global router for gate-arrays based on Karmarkar’s interior point methods. In Proceedings of the Third International Workshop on VLSI System Design, pages 73–82, 1990.

    Google Scholar 

  110. P. M. Pardalos, K. G. Ramakrishnan, M. G. C. Resende, and Y. Li. Implementation of a variance reduction-based lower bound in a branchand-bound algorithm for the quadratic assignment problem. SIAM Journal on Optimization, 7: 280–294, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  111. P. M. Pardalos and M.G.C. Resende. Interior point methods for global optimization problems In T. Terlaky, editor, Interior Point Methods of Mathematical Programming, pages 467–500. Kluwer Academic Publishers, 1996.

    Google Scholar 

  112. P. M. Pardalos and H. Wolkowicz, editors. Topics in Semidefinite and Interior-Point Methods. Fields Institute Communications Series. American Mathematical Society, New Providence, Rhode Island, 1997.

    Google Scholar 

  113. P.M. Pardalos. Continuous approaches to discrete optimization problems. In G. Di Pillo and F. Giannessi, editors, Nonlinear optimization and applications. Plenum Publishing, 1996.

    Google Scholar 

  114. P.M. Pardalos and H. Wolkowicz, editors. Quadratic assignment and related problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1994.

    Google Scholar 

  115. R. G. Parker and R. L. Rardin. Discrete Optimization. Academic Press, San Diego, CA 92101, 1988.

    Google Scholar 

  116. L. Portugal, F. Bastos, J. Jûdice, J. Paixâo, and T. Terlaky. An investigation of interior point algorithms for the linear transportation problem. SIAM J. Sci. Computing, 17: 1202–1223, 1996.

    Article  MATH  Google Scholar 

  117. L. Portugal, M.G.C. Resende, G. Veiga, and J. Jndice. An efficient implementation of an infeasible primal-dual network flow method. Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey, 1994.

    Google Scholar 

  118. R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36: 1389–1401, 1957.

    Google Scholar 

  119. K. G. Ramakrishnan, M. G. C. Resende, and P. M. Pardalos. A branch and bound algorithm for the quadratic assignment problem using a lower bound based on linear programming. In C. Floudas and P.M. Pardalos, editors, State of the Art in Global Optimization: Computational Methods and Applications. Kluwer Academic Publishers, 1995.

    Google Scholar 

  120. K.G. Ramakrishnan, N.K. Karmarkar, and A.P. Kamath. An approximate dual projective algorithm for solving assignment problems. In David S. Johnson and Catherine C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, volume 12 of DIMA CS Series in Discrete Mathematics and Theoretical Computer Science, pages 431–451. American Mathematical Society, 1993.

    Google Scholar 

  121. K.G. Ramakrishnan, M.G.C. Resende, and P.M. Pardalos. A branch and bound algorithm for the quadratic assignment problem using a lower bound based on linear programming. In State of the Art in Global Optimization: Computational Methods and Applications, pages 57–73. Kluwer Academic Publishers, 1996.

    Google Scholar 

  122. K.G. Ramakrishnan, M.G.C. Resende, B. Ramachandran, and J.F. Pekny. Tight QAP bounds vias linear programming. In From Local to Global Optimization. Kluwer Academic Publishers, 1998. To appear.

    Google Scholar 

  123. M. Ramana and P. M. Pardalos. Semidefinite programming In T. Terlaky, editor, Interior Point Methods of Mathematical Programming, pages 369–398. Kluwer Academic Publishers, 1996.

    Google Scholar 

  124. S. Ramaswamy and J. E. Mitchell. On updating the analytic center after the addition of multiple cuts. Technical Report 37–94–423, DSES, Rensselaer Polytechnic Institute, Troy, NY 12180, October 1994.

    Google Scholar 

  125. S. Ramaswamy and J. E. Mitchell. A long step cutting plane algorithm that uses the volumetric barrier. Technical report, DSES, Rensselaer Polytechnic Institute, Troy, NY 12180, June 1995.

    Google Scholar 

  126. M.G.C. Resende, P.M. Pardalos, and Y. Li. FORTRAN subroutines for approximate solution of dense quadratic assignment problems using GRASP. ACM Transactions on Mathematical Software, To appear.

    Google Scholar 

  127. M.G.C. Resende, K.G. Ramakrishnan, and Z. Drezner. Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Operations Research, 43 (5): 781–791, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  128. M.G.C. Resende, T. Tsuchiya, and G. Veiga. Identifying the optimal face of a network linear program with a globally convergent interior point method. In W.W. Hager, D.W. Hearn, and P.M. Pardalos, editors, Large scale optimization: State of the art, pages 362–387. Kluwer Academic Publishers, 1994.

    Google Scholar 

  129. M.G.C. Resende and G. Veiga. Computing the projection in an interior point algorithm: An experimental comparison. Investigaciôn Operativa, 3: 81–92, 1993.

    MathSciNet  Google Scholar 

  130. M.G.C. Resende and G. Veiga. An efficient implementation of a network interior point method. In David S. Johnson and Catherine C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, volume 12 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 299–348. American Mathematical Society, 1993.

    Google Scholar 

  131. M.G.C. Resende and G. Veiga. An implementation of the dual affine scaling algorithm for minimum cost flow on bipartite uncapaciated networks. SIAM Journal on Optimization, 3: 516–537, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  132. C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization: An Interior Point Approach. John Wiley, Chichester, 1997.

    MATH  Google Scholar 

  133. Günther Ruhe. Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Boston, MA, 1991.

    Book  Google Scholar 

  134. C.-J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’s algorithm for integer programming. In P.M. Pardalos and M.G.C. Re-sende, editors, COAL Bulletin-Special issue on Computational Aspects of Combinatorial Optimization, volume 21, pages 23–28. Mathematical Programming Society, 1992.

    Google Scholar 

  135. L.P. Sinha, B.A. Freedman, N.K. Karmarkar, A. Putcha, and K.G. Ramakrishnan. Overseas network planning. In Proceedings of the Third International Network Planning Symposium-NETWORKS’86, pages 8.2.1–8.2.4, June 1986.

    Google Scholar 

  136. R. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal control and stochastic linear programs. SIAM Journal on Applied Mathematics, 17: 638–663, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  137. R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

    Book  Google Scholar 

  138. P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathematical Programming, 73: 291–341, 1996.

    MATH  MathSciNet  Google Scholar 

  139. L. Vandenberghe and S. Boyd. Semidefinite programming SIAM Review, 38: 49–95, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  140. R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Boston, 1996.

    MATH  Google Scholar 

  141. R.J. Vanderbei, M.S. Meketon, and B.A. Freedman. A modification of Karmarkar’s linear programming algorithm. Algorithmica, 1: 395–407, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  142. J.P. Warners, T. Terlaky, C. Roos, and B. Jansen. Potential reduction algorithms for structured combinatorial optimization problems. Operations Research Letters, 21: 55–64, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  143. J.P. Warners, T. Terlaky, C. Roos, and B. Jansen. A potential reduction approach to the frequency assignment problem. Discrete Applied Mathematics, 78: 251–282, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  144. H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph partitioning problem. Technical report, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada, October 1996.

    Google Scholar 

  145. H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the set partitioning problem. Technical report, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada, October 1996.

    Google Scholar 

  146. S. Wright. Primal-dual interior point methods. SIAM, Philadelphia, 1996.

    Google Scholar 

  147. Y. Ye. On affine scaling algorithms for nonconvex quadratic programming. Mathematical Programming, 56: 285–300, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  148. Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley, New York, 1997.

    Book  MATH  Google Scholar 

  149. Quey-Jen Yeh. A reduced dual affine scaling algorithm for solving assignment and transportation problems. PhD thesis, Columbia University, New York, NY, 1989.

    Google Scholar 

  150. Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM Journal on Optimization, 4 (1): 208–227, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  151. Q. Zhao. Semidefinite programming for assignment and partitioning problems. PhD thesis, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada, 1996.

    Google Scholar 

  152. Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. Technical Report 95–27, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada, September 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mitchell, J.E., Pardalos, P.M., Resende, M.G.C. (1998). Interior Point Methods for Combinatorial Optimization. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics