Skip to main content

Shortest Networks on Surfaces

  • Chapter
Handbook of Combinatorial Optimization
  • 4278 Accesses

Abstract

Suppose A = {a l, a 2, ... , a n } is a point set in a metric space M. The shortest network problem asks for a minimum length network S(A) that interconnects all points of A (called terminals), possibly with some additional points to shorten the network. S(A) must be a tree since it cannot contain any cycle for minimality. In the literature this problem is called the Steiner tree problem, and S(A) is called a Steiner minimal tree for A [9]. If no additional points are added, then the network, denoted by T(A), is called a minimal spanning tree on A. Sometimes these networks are simply denoted by S and T if no confusion is caused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Brazil, J.H. Rubinstein, D.A. Thomas, J.F. Weng and N.C. Wormald, Shortest Networks on Spheres, Proceedings of the DIMACS Workshop on Network Design, to appear.

    Google Scholar 

  2. J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian geometry, ( North-Holland Publishing Co., Amsterdam, 1975 ).

    MATH  Google Scholar 

  3. E.J. Cockayne, On Fermat’s problem on the surface of a sphere, Math. Magazine, Vol. 45 (1972), pp. 216–219.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Dolan, R. Weiss and J. MacGregor Smith, Minimal length tree networks on the unit sphere, Annals of Oper. Res., Vol. 33 (1991), pp. 503–535.

    Article  MATH  MathSciNet  Google Scholar 

  5. D.Z. Du and F.K. Hwang, A proof of the Gilbert-Pollak Conjecture on the Steiner ratio, Algorithmica, Vol. 7 (1992), pp. 121–135.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.Z. Du, F.K. Hwang and J.F. Weng, Steiner minimal trees for regular polygons, Discrete Comput. Geometry, Vol. 2 (1987), pp. 65–87.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.R. Carey, R.L. Graham and D.S. Johnson, The complexity of computing Steiner minimal trees, SIAM J. Appl. Math., Vol. 32 (1977), pp. 835–859.

    Article  MathSciNet  Google Scholar 

  8. F.K. Hwang and J.F. Weng, Hexagonal coordinate systems and Steiner minimal trees, Discrete Math., Vol. 62 (1986), pp. 49–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. F.K. Hwang, D.S. Richard and P. Winter, The Steiner tree problem, ( North-Holland Publishing Co., Amsterdam, 1992 ).

    MATH  Google Scholar 

  10. J.H. Rubinstein and D.A. Thomas, A variational approach to the Steiner network problem, Ann. Oper. Res., Vol. 33 (1991), pp. 481–499.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.H. Rubinstein and D.A. Thomas, Graham’s problem on shortest networks for points on a circle, Algorithmica, Vol. 7 (1992), pp. 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.H. Rubinstein and J.F. Weng, Compression theorems and Steiner ratios on spheres, J. Combin. Optimization, Vol. 1 (1997) pp. 67–78.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Todhunter and J.G. Leathem, Spherical trigonometry, ( Macmillan and CO., London, 1901 ).

    Google Scholar 

  14. J.F. Weng, Steiner minimal trees on vertices of regular polygons (Chinese. English summary), Acta Math. Appl. Sinica, Vol. 8 (1985), pp. 129–141.

    MATH  MathSciNet  Google Scholar 

  15. J.F. Weng, Generalized Steiner problem and hexagonal coordinate system ( Chinese. English summary), Acta. Math. Appl. Sinica, Vol. 8 (1985), pp. 383–397.

    MATH  MathSciNet  Google Scholar 

  16. J.F. Weng, Steiner trees on curved surfaces, preprint, 1997.

    Google Scholar 

  17. J.F. Weng, Shortest networks for cocircular points on spheres, J. Combin. Optimization, to appear.

    Google Scholar 

  18. J.F. Weng, Finding Steiner points on spheres, preprint, 1997.

    Google Scholar 

  19. J.F. Weng and J.H. Rubinstein, A note on the compression theorem for convex surfaces, preprint, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weng, J.F. (1998). Shortest Networks on Surfaces. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics