Skip to main content

Steiner Minimal Trees in E 3: Theory, Algorithms, and Applications

  • Chapter
Handbook of Combinatorial Optimization
  • 4276 Accesses

Abstract

Let’s say that you are going to design a new electronic circuit at the molecular/atomic level where you know beforehand the basic number of atomic elements of the circuit and you wish to arrange them so that they achieve an optimal configuration that is both compact, stable, and integrated electrically. How would you configure the atoms? If one assumes that the cost of putting together the molecular structure is proportional to distance i.e. the potential energy in the system, then you would want to minimize the overall interconnecting distance between the atoms. This is fundamentally the Steiner problem in E 3. Figure 1 demonstrates a geometric construction for the Steiner Minimal Tree of N=6 vertices in E 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, A.A., D.C. Kay and D.W. Litwhiler, 1979. “Location Dominance on Spherical Surfaces,” Operations Research 27 972–981.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Aurenhammer “Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure,” ACM Comput. Surveys 23 345–405, 1991. Technical Report B-90–09, Department of Mathematics, Free University of Berlin (1990).

    Article  Google Scholar 

  3. Bern, M. and R. Graham, 1989. “The Shortest-Network Problem,” Scientific American 260 (1), 84–89.

    Article  Google Scholar 

  4. Bern, M. and D. Eppstein, 1992. “Mesh Generation and Optimal Triangulation,” in Computing and Euclidean Geometry eds. D.Z. Du and F.K. Hwang. World Scientific Press: Singapore, pp 23–90.

    Google Scholar 

  5. Beasley, J.E., 1992 “A Greedy Heuristic for the Euclidean and Rectilinear Steiner Problem,” EJOR 58, 284–292.

    Article  MATH  Google Scholar 

  6. Beasley, J.E. and F. Goffinet, 1994. A Delaunay Triangulation based heuristic for the Euclidean Steiner Problem.“ Networks 24 215–224.

    Article  MATH  Google Scholar 

  7. Beichel, I. and F. Sullivan, 1992. “Fast Triangulation via Empty Spheres.” Working Paper, Computing and Applied Mathematics Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899.

    Google Scholar 

  8. B.N. Boots “Voronoi (Thiessen) Polygons” Norwich, England: Geo Books, W.H. Hutchins & Sons (1986).

    Google Scholar 

  9. Brandon, C. and J. Tooze, 1991. Introduction to Protein Structure. New York: Gabriel Publishing.

    Google Scholar 

  10. Brazil, M., Rubinstein, J.H., Wormald, N., Thomas, D., Weng, J., Cole, T., 1996. “Minimal Steiner Trees for 2k x2kSquare Lattices. J. Comb. Theorey Series A 73 91–110.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, S.K., 1972 “The Generation of Minimal Trees with a Steiner Topology,” JACM 19 (4) 699–711.

    Article  MATH  Google Scholar 

  12. Chen, J.M., C.E. Kung, S.E. Feairheller, and E.M. Brown, 1991. “An Energetic Evaluation… Collagen Microfibril Model.” J. Protein Chemistry 10 pg. 535.

    Article  Google Scholar 

  13. Cheriton, D. and R. E. Tarjan, 1976. “Finding Minimal Spanning Trees,” Siam J. of Computing 5 (4)724–742.

    Article  MATH  MathSciNet  Google Scholar 

  14. Chung,F.R.K. and F.K. Hwang, 1976, “A Lower Bound for the Steiner Tree Problem,” Siam J. Appl.Math 34(1) 27–36.

    Article  MathSciNet  Google Scholar 

  15. Chung, F.R.K. and R.L. Graham, 1978. “Steiner Trees for Ladders,” Annals Of Discrete Mathematics 2 173–200.

    Article  MATH  MathSciNet  Google Scholar 

  16. Cockayne, E.J. and Z.A. Melzak, 1968. “Steiner’s Problem for Set Terminals,” J.Appl.Math. 26 (2), 213–218.

    MATH  MathSciNet  Google Scholar 

  17. Cockayne, E.J. and Z.A. Melzak, 1969. “Euclidean Constructability in Graph Minimization Problems.” Math.Mag.42 206–208.

    Article  MATH  MathSciNet  Google Scholar 

  18. Cockayne, E.J., 1972 “On Fermat’s Problem on the Surface of a Sphere.” Mathematics Magazine Sept-Oct, 216–219.

    Google Scholar 

  19. Courant, D.R. and H. Robbins, 1941. What Is Mathematics? New York: Oxford University Press.

    Google Scholar 

  20. Coxeter, H.S.M., 1961.Introduction to Geometry. Wiley.

    MATH  Google Scholar 

  21. Dickerson, R.E. and I. Geis, 1969. The Structure and Action of Proteins. New York: Harper and Row, Publishers.

    Google Scholar 

  22. Dolan, J. R. Weiss, and J. M. Smith, 1991. “Minimal Length Tree Networks on the Unit Sphere.” Annals of Operations Research 33 503–535.

    Article  MATH  MathSciNet  Google Scholar 

  23. Donnay, J.D.H. 1945. Spherical Trigonometry in Encyclopedia of Mathematics Interscience: New York.

    Google Scholar 

  24. Drezner, Z. and G.O. Wesolowsky, 1979. “Facility Location on a Sphere,” Journal of the Operational Research Society 29 997–1004.

    Google Scholar 

  25. Du, D.Z., F.K. Hwang, and J.F. Weng, 1982. “Steiner Minimal Trees on Zig-Zag Lines.” Trans. Amer. Math Soc. 278 (1), 149–156.

    Article  MathSciNet  Google Scholar 

  26. Du, D.Z. and F.K. Hwang. “A Proof of the Gilbert-Pollak Conjecture on the Steiner Ratio,” Algorithmica 7 121–135, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  27. Du, D.Z. “Disproving Gilbert-Pollak Conjecture in higher dimensional spaces.” Manuscript, Computer Science Department, University of Minnesota, September 1992.

    Google Scholar 

  28. Du, D.Z. and W. Smith, 1992. “Three Disproofs of the Gilbert Pollak Conjecture on Steiner ratio in three or more dimensions.” in review.

    Google Scholar 

  29. Fortune, S.J. “Voronoi Diagrams and Delaunay Triangulations.” in Computing and Euclidean Geometry eds. D.Z. Du and F.K. Hwang. World Scientific Press: Singapore, pp. 193–233.

    Google Scholar 

  30. S.A. Fossey, G. Nemethy, K.D. Gibson, H.A. Scheraga, 1991. “Conformational Energy Studies Of Beta-Sheets Of Model Silk Fibroin Peptides. I. Sheets Of Poly(Ala-Gly) Chains” Biopolymers 3l 1529.

    Article  Google Scholar 

  31. Fuller, R.B., 1963. No More Secondhand God. Carbondale: Souhern Illinois University Press.

    Google Scholar 

  32. Garey, M.R., R.L. Graham and D.S. Johnson, 1977. “The Complexity of Computing Steiner Minimal Trees,” Siam J. Appl. Math 32 (4), 835–859.

    Article  MATH  MathSciNet  Google Scholar 

  33. Garey, M.R. and D.S. Johnson, 1979. Computers And Intractability; A Guide To The Theory Of Np-completeness. (San Francisco: W.H.Freeman and Company.)

    MATH  Google Scholar 

  34. Graham, R.L. and F.K. Hwang, 1976, “Remarks on Steiner Minimal Trees.” Bull. Inst. Math. Acad. Sinica 4 177–182.

    MATH  MathSciNet  Google Scholar 

  35. Gilbert, E.N. and H.O. Pollak, 1968, “Steiner Minimal Trees.” Siam J. Appi. Math 16 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  36. Private communication.

    Google Scholar 

  37. Greening, M.G., 1971. “Solution to Problem E2233,” Amer. Math. Monthly 4 303–304.

    MathSciNet  Google Scholar 

  38. Hendrickson, B.A., 1990. “The Molecule Problem: Determining Conformation from Pairwise Distances,” Ph.D. Thesis #90–1159. Department of Computer Science, Cornell University, Ithaca, NY 14853–7501.

    Google Scholar 

  39. Hwang, F. W. and D. Richards, 1989 “Steiner Tree Problems,” Networks.

    Google Scholar 

  40. Kabsch W. et. al. “Atomic Structure of the Actin:/DN$ASE I Complex,” Nature 347 37.

    Article  Google Scholar 

  41. Kuhn, H.W., 1973 “A Note on Fermat’s Problem.” Math. Programming 4 98–107.

    Article  MATH  MathSciNet  Google Scholar 

  42. Litwhiler, D.W., 1980, “Steiner’s Problem and Fagnano’s Result on the Sphere.” Mathematical Programming 18 286–290.

    Article  MATH  MathSciNet  Google Scholar 

  43. Love, R.F. J.G. Morris and G.O. Wesolowsky, 1988. Facilities Location North-Holland.

    MATH  Google Scholar 

  44. Melzak, Z.A., 1961. “On the Problem of Steiner,” Can Math Bulletin 4 143–148.

    Article  MATH  MathSciNet  Google Scholar 

  45. McColm, I.J., 1983. Ceramic Science for Materials Technologists. New York: Chapman and Hall.

    Google Scholar 

  46. Miller, M.H. and H. A. Scheraga, 1976. “Calculation of the Structures of Collagen Models….” J.Polym.Sci.,Polym.Symp. 54 171–200.

    Google Scholar 

  47. Nemethy, George, et.al., 1992. “Energy Parameters in Polypeptides….” J. Phys. Chem. 96 6472–6484.

    Article  Google Scholar 

  48. Okabe, A. B. Boots, and K. Sugihara Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, (1992).

    MATH  Google Scholar 

  49. Pauling, Linus, 1963. The Architecture of Molecules.

    Google Scholar 

  50. Pearce, Peter. Structure in Nature is a Strategy for Design. MIT Press.

    Google Scholar 

  51. Prim, R.C., 1957. “Shortest Connecting Networks and Some Generalizations.” BSTJ 36 1389–1401.

    Google Scholar 

  52. Preparata, F. and M.I. Shamos, 1985. Computational Geometry Springer-Verlag.

    Google Scholar 

  53. Schorn, Peter. 1994. Private Communication.

    Google Scholar 

  54. Smith, J. MacGregor and J.S. Liebman, 1979. “Steiner Trees, Steiner Circuits, and the Interference Problem in Building Design.” Eng Opt 4(1), 15–36.

    Article  Google Scholar 

  55. Smith, J. MacGregor, Lee, D.T. and J.S. Liebman, 1981. “An O(NlogN) Heuristic for Steiner Minimal Tree Problems on the Euclidean Metric.” Networks 11 (1), 23–39.

    Article  MATH  MathSciNet  Google Scholar 

  56. Smith, J. MacGregor, R. Weiss, amd M. Patel, “An O(N 2) Heuristic for Steiner Minimal Trees in E 3Networks 25 273–289.

    Google Scholar 

  57. Smith, J. MacGregor and P. Winter, 1995. “Computational Geometry and Topological Network Design,” Computing in Euclidean Geometry Lecture Note Series in Computing, Volume 4, 2nd edition, eds. Ding-Zhu Du and Frank Hwang, World Scientific, 351–451.

    Google Scholar 

  58. Smith, J. MacGregor, R. Weiss, B. Toppur, and N. Maculan, 1996. “Characterization of Protein Structure and 3-d Steiner Networks,” Proceedings of the II ALIO/EURO Workshop on Practical Combinatorial Optimization Catholic University of Valpariso, Faculty of Engineering, School of Industrial Engineering, November 1996, 37–44.

    Google Scholar 

  59. Smith, J. MacGregor, B. Toppur, 1996, “Euclidean Steiner Minimal Trees, Minimum Energy Configurations, and the Embedding Problem of Weighted Graphs in E 3Discrete Applied Matematics 7l, 187–215.

    Article  MATH  Google Scholar 

  60. Tóth, Fejes, 1975. “Research Problem 13” Period. Math. Hungar. 6 197–199.

    Article  MathSciNet  Google Scholar 

  61. Wills, J.M., 1985. “On the density of Finite Packing,”. Acta. Math. Hung. 46 205–210.

    Article  MATH  MathSciNet  Google Scholar 

  62. Smith, Warren D. “How to find Steiner minimal trees in Euclidean d-space,” Algorithmica 7 137–177, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  63. Smith, Warren D. “Two disproofs of the Gilbert-Pollak Steiner ratio conjecture in d—space for d ≥ 3. accepted for publication Journal of Combinatorial Theory, Series A.

    Google Scholar 

  64. Smith, Warren D and J. MacGregor Smith. “On the Steiner Ratio in 3-Space.” Journal of Combinatorial Theory, Series A 69(2), 301–332.

    Google Scholar 

  65. Vaidya, Pravin M., 1988. “Minimum Spanning Trees in k—Dimensional Space” SIAM J. Comput 17 (3), 572–582.

    Article  MATH  MathSciNet  Google Scholar 

  66. Voet, D. and J. Voet, 1990 Biochemistry Wiley.

    Google Scholar 

  67. Wesolowsky, G.O., “Location Problems on a Sphere.” Regional Science and Urban Economics 12 495–508.

    Google Scholar 

  68. Winter, P., 1987. “Steiner Problem in Networks: A Survey.” NETWORKS 17 129–167.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

MacGregor Smith, J. (1998). Steiner Minimal Trees in E 3: Theory, Algorithms, and Applications. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics