Skip to main content

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work

  • Chapter
Handbook of Combinatorial Optimization
  • 4263 Accesses

Abstract

Minimizing a network’s length is one of the oldest optimization problems in mathematics and, consequently, it has been worked on by many of the leading mathematicians in history. In the mid-seventeenth century a simple problem was posed: Find the point P that minimizes the sum of the distances from P to each of three given points in the plane. Solutions to this problem were derived independently by Fermat, Torricelli, and Cavaliers. They all deduced that either P is inside the triangle formed by the given points and that the angles at P formed by the lines joining P to the three points are all 120°, or P is one of the three vertices and the angle at P formed by the lines joining P to the other two points is greater than or equal to 120°.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap. Parallel computational geometry. Algorithmica, 3(3):293–327, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.J. Atallah and M.T. Goodrich. Parallel algorithms for some functions of two convex polygons. Algorithmica, 3(4):535–548, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.W. Bern and R.L. Graham. The shortest-network problem. Sci. Am., 260(1):84–89, January 1989.

    Article  Google Scholar 

  4. W.M. Boyce and J.R. Seery. STEINER 72 - an improved version of Cockayne and Schiller’s program STEINER for the minimal network problem. Technical Report 35, Bell Labs., Dept. of Computer Science, 1975.

    Google Scholar 

  5. G. X. Chen. The shortest path between two points with a (linear) constraint [in Chinese]. Knowledge and Appl. of Math., 4:1–8, 1980.

    Google Scholar 

  6. A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, University of Illinois, Urbana-Champaign, IL, 1980.

    Google Scholar 

  7. F.R.K. Chung, M. Gardner, and R.L. Graham. Steiner trees on a checkerboard. Math. Mag., 62:83–96, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. F.R.K. Chung and R.L. Graham. Steiner trees for ladders. In B. Alspach, P. Hell, and D.J. Miller, editors, Annals of Discrete Mathematics:2, pages 173–200. North-Holland Publishing Company, 1978.

    Google Scholar 

  9. E.J. Cockayne. On the Steiner problem. Canad. Math. Bull., 10(3):431–450, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  10. E.J. Cockayne. On the efficiency of the algorithm for Steiner minimal trees. SIAM J. Appl. Math., 18(1):150–159, January 1970.

    Article  MATH  MathSciNet  Google Scholar 

  11. E.J. Cockayne and D.E. Hewgill. Exact computation of Steiner minimal trees in the plane. Info. Proccess. Lett., 22(3):151–156, March 1986.

    Article  MATH  MathSciNet  Google Scholar 

  12. E.J. Cockayne and D.E. Hewgill. Improved computation of plane Steiner minimal trees. Algorithmica, 7(2/3):219–229, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. E.J. Cockayne and D.G. Schiller. Computation of Steiner minimal trees. In D.J.A. Welsh and D.R. Woodall, editors, Combinatorics, pages 5271, Maitland House, Warrior Square, Southend-on-Sea, Essex SS1 2J4, 1972. Mathematical Institute, Oxford, Inst. Math. Appl.

    Google Scholar 

  14. R. Courant and H. Robbins. What is Mathematics? an elementary approach to ideas and methods. Oxford University Press, London, 1941.

    MATH  Google Scholar 

  15. D.Z. Du and F.H. Hwang. A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica, 7(2/3):121–135, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  16. M.R. Garey, R.L. Graham, and D.S Johnson. The complexity of computing Steiner minimal trees. SIAM J. Appl. Math.,32(4):835–859, June 1977.

    Article  MATH  MathSciNet  Google Scholar 

  17. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine - A User’s guide and tutorial for networked parallel computing. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  18. R. Geist, R. Reynolds, and C. Dove. Context sensitive color quantization. Technical Report 91–120, Dept. of Comp. Sci., Clemson Univ., Clemson, SC 296–34, July 1991.

    Google Scholar 

  19. R. Geist, R. Reynolds, and D. Suggs. A markovian framework for digital halftoning. ACM Trans. Graphics,12(2):136–159, April 1993.

    Article  MATH  Google Scholar 

  20. R. Geist and D. Suggs. Neural networks for the design of distributed, fault-tolerant, computing environments. In Proc. 11th IEEE Symp. on Reliable Distributed Systems (SRDS), pages 189–195, Houston, Texas, October 1992.

    Google Scholar 

  21. R. Geist, D. Suggs, and R. Reynolds. Minimizing mean seek distance in mirrored disk systems by cylinder remapping. In Proc. 16th IFIP Int. Symp. on Computer Performance Modeling Measurement, and Evaluation (PERFORMANCE `93), pages 91–108, Rome, Italy, September 1993.

    Google Scholar 

  22. R. Geist, D. Suggs, R. Reynolds, S. Divatia, F. Harris, E. Foster, and P. Kolte. Disk performance enhancement through Markov-based cylinder remapping. In Cherri M. Pancake and Douglas S. Reeves, editors, Proc. of the ACM Southeastern Regional Conf., pages 23–28, Raleigh, North Carolina, April 1992. The Association for Computing Machinery, Inc.

    Chapter  Google Scholar 

  23. G. Georgakopoulos and C. Papadimitriou. A 1-steiner tree problem. J. Algorithms, 8(1):122–130, Mar 1987.

    Article  MATH  MathSciNet  Google Scholar 

  24. E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM J. Appl. Math.,16(1):1–29, January 1968.

    Article  MATH  MathSciNet  Google Scholar 

  25. R.L. Graham. Private Communication.

    Google Scholar 

  26. S. Grossberg. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1:17–61, 1988.

    Article  Google Scholar 

  27. F.C. Harris, Jr. Parallel Computation of Steiner Minimal Trees. PhD thesis, Clemson, University, Clemson, SC 296–34, May 1994.

    Google Scholar 

  28. F.C. Harris, Jr. A stochastic optimization algorithm for steiner minimal trees. Congr. Numer., 105:54–64, 1994.

    MathSciNet  Google Scholar 

  29. F.C. Harris, Jr. An introduction to steiner minimal trees on grids. Congr. Numer., 111:3–17, 1995.

    MATH  MathSciNet  Google Scholar 

  30. F.C. Harris, Jr. Parallel computation of steiner minimal trees. In David H. Bailey, Petter E. Bjorstad, John R. Gilbert, Michael V. Mascagni, Robert S. Schreiber, Horst D. Simon, Virgia J. Torczan, and Layne T. Watson, editors, Proc. Of the 7th SIAM Conf. on Parallel Process. for Sci Comput., pages 267–272, San Francisco, California, February 1995. SIAM.

    Google Scholar 

  31. S. Hedetniemi. Characterizations and constructions of minimally 2-connected graphs and minimally strong digraphs. In Proc. 2nd Louisiana Conf. on Combinatorics, Graph Theory, and Computing, pages 257–282, Louisiana State Univ., Baton Rouge, Louisiana, March 1971.

    Google Scholar 

  32. J.J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci., 81:3088–3092, 1984.

    Article  Google Scholar 

  33. F. K. Hwang and J. F. Weng. The shortest network under a given topology. J. Algorithms, 13(3):468–488, Sept. 1992.

    Article  MATH  MathSciNet  Google Scholar 

  34. F.K. Hwang and D.S. Richards. Steiner tree problems. Networks, 22(1):55–89, January 1992.

    Article  MATH  MathSciNet  Google Scholar 

  35. F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem, volume 53 of Ann. Discrete Math. North-Holland, Amsterdam, 1992.

    Google Scholar 

  36. F.K. Hwang, G.D. Song, G.Y. Ting, and D.Z. Du. A decomposition theorem on Euclidian Steiner minimal trees. Disc. Comput. Geom., 3(4):367–382, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, Reading, MA, 1992.

    MATH  Google Scholar 

  38. V. Jarnik and O. Kössler. O minimâlnich gratech obsahujicich n danÿch bodu [in Czech]. Casopis Pesk. Mat. Fyr., 63:223–235, 1934.

    Google Scholar 

  39. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(13):671–680, May 1983.

    Article  MATH  MathSciNet  Google Scholar 

  40. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing: Design and Analysis of Algorithms. The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

    MATH  Google Scholar 

  41. Z.A. Melzak. On the problem of Steiner. Canad. Math. Bull., 4(2):143–150, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  42. Michael K. Molloy. Performance analysis using stochastic Petri nets. IEEE Trans. Comput.,C-31(9):913–917, September 1982.

    Article  Google Scholar 

  43. J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

    Google Scholar 

  44. F.P. Preparata and M.I. Shamos. Computational Geometry: an introduction. Springer-Verlag, New York, NY, 1988.

    Google Scholar 

  45. Michael J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill Inc., New York, NY, 1994.

    Google Scholar 

  46. M.J. Quinn and N. Deo. An upper bound for the speedup of parallel best-bound branch-and-bound algorithms. BIT, 26(1):35–43, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  47. W.R. Reynolds. A Markov Random Field Approach to Large Combinatorial Optimization Problems. PhD thesis, Clemson, University, Clemson, SC 296–34, August 1993.

    Google Scholar 

  48. M.I. Shamos. Computational Geometry. PhD thesis, Department of Computer Science, Yale University, New Haven, CT, 1978.

    Google Scholar 

  49. Justin R. Smith. The Design and Analysis of Parallel Algorithms. Oxford University Press, Inc., New York, NY, 1993.

    Google Scholar 

  50. D. Trietsch. Augmenting Euclidean networks — the Steiner case. SIAM J. Appl. Math., 45:855–860, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Trietsch and F. K. Hwang. An improved algorithm for Steiner trees. SIAM J. Appl. Math., 50:244–263, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  52. P. Winter. An algorithm for the Steiner problem in the Euclidian plane. Networks, 15(3):323–345, Fall 1985.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Harris, F.C. (1998). Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics