Skip to main content

Computing Distances between Evolutionary Trees

  • Chapter
Book cover Handbook of Combinatorial Optimization

Abstract

Comparing objects to find their similarities or, equivalently, dissimilarities, is a fundamental issue in many fields including pattern recognition, image analysis, drug design, the study of thermodynamic costs of computing, cognitive science, etc. Various models have been introduced to measure the degree of similarity or dissimilarity in the literature. In the latter case the degree of dissimilarity is also often referred to as the distance. While some distances are straightforward to compute, e.g. the Hamming distance for binary strings, the Euclidean distance for geometric objects; some others are formulated as combinatorial optimization problems and thus pose nontrivial challenging algorithmic problems, sometimes even uncomputable, such as the universal information distance between two objects [4].

Supported in part by a CGAT (Canadian Genome Analysis and Technology) grant. Work done while the author was at McMaster University and University of Waterloo.

Supported in part by NSF grant 9205982 and CGAT.

Supported in part by NSERC Operating Grant OGP0046613 and CGAT.

Supported in part by the NSERC Operating Grant OGP0046506 and CGAT.

Supported in part by CGAT and NSERC Internation Fellowship.

Supported in part by Hong Kong Research Council.

Supported in part by CGAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous, Triangulating the circle, at random. Amer Math. Monthly, 89, pp. 223–234, 1994.

    Article  MathSciNet  Google Scholar 

  2. M.A. Armstrong, Groups and Symmetry, Springer Verlag, New York Inc., 1988.

    MATH  Google Scholar 

  3. D. Barry and J.A. Hartigan, Statistical analysis of hominoid molecular evolution, Stat. Sci., 2, pp. 191–210, 1987.

    Article  MathSciNet  Google Scholar 

  4. C.H. Bennett, P. Gács, M. Li, P. Vitányi, and W. Zurek, Information Distance, to appear in IEEE Trans. Inform. Theory.

    Google Scholar 

  5. R. P. Boland, E. K. Brown and W. H. E. Day, Approximating minimumlength-sequence metrics: a cautionary note, Math. Soc. Sci., 4, pp. 261–270, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Culik II and D. Wood, A note on some tree similarity measures, Inform. Proc. Let., 15, pp. 39–42, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp and L. Zhang, On distances between phylogenetic trees, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 427–436, 1997.

    Google Scholar 

  8. B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp, On the linear-cost subtree-transfer distance, Algorithmica, submitted, 1997.

    Google Scholar 

  9. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, On computing the nearest neighbor interchange distance, Preprint, 1997.

    Google Scholar 

  10. W. H. E. Day, Properties of the nearest neighbor interchange metric for trees of small size, Journal of Theoretical Biology, 101, pp. 275–288, 1983.

    Article  MathSciNet  Google Scholar 

  11. A. K. Dewdney, Wagner’s theorem for torus graphs, Discrete Math., 4, pp. 139–149, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  12. A.W.F. Edwards and L.L. Cavalli-Sforza, The reconstruction of evolution, Ann. Hum. Genet., 27, 105, 1964. (Also in Heredity 18, 553.)

    Google Scholar 

  13. J. Felsenstein, Evolutionary trees for DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17, pp. 368–376, 1981.

    Article  Google Scholar 

  14. J. Felsenstein, personal communication, 1996.

    Google Scholar 

  15. W.M. Fitch, Toward defining the course of evolution: minimum change for a specified tree topology, Syst. Zool., 20, pp. 406–416, 1971.

    Article  Google Scholar 

  16. W.M. Fitch and E. Margoliash, Construction of phylogenetic trees, Science, 155, pp. 279–284, 1967.

    Article  Google Scholar 

  17. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

    MATH  Google Scholar 

  18. L. Guibas and J. Hershberger, Morphing simple polygons, Proceeding of the ACM 10th Annual Sym. of Comput. Geometry, pp. 267–276, 1994.

    Google Scholar 

  19. J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Math. Biosci., 98, pp. 185–200, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Hein, A heuristic method to reconstruct the history of sequences subject to recombination, J. Mol. Evol., 36, pp. 396–405, 1993.

    Article  Google Scholar 

  21. J. Hein, personal email communication, 1996.

    Google Scholar 

  22. J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics, 71, pp. 153–169, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Hershberger and S. Suri, Morphing binary trees. Proceeding of the ACM-SIAM 6th Annual Symposium of Discrete Algorithms, pp. 396–404, 1995.

    Google Scholar 

  24. F. Hurtado, M. Noy, and J. Urrutia, Flipping edges in triangulations, Proc. of the ACM 12th Annual Sym. of Comput. Geometry, pp. 214–223, 1996.

    Google Scholar 

  25. J. P. Jarvis, J. K. Luedeman and D. R. Shier, Counterexamples in measuring the distance between binary trees, Mathematical Social Sciences, 4, pp. 271–274, 1983.

    Article  MATH  Google Scholar 

  26. J. P. Jarvis, J. K. Luedeman and D. R. Shier, Comments on computing the similarity of binary trees, Journal of Theoretical Biology, 100, pp. 427–433, 1983.

    Article  MathSciNet  Google Scholar 

  27. J. Kececioglu and D. Gusfield, Reconstructing a history of recombinations from a set of sequences, Proc. 5th Annual ACM-SIAM Symp. Discrete Algorithms, 1994.

    Google Scholar 

  28. M. Kuhner and J. Felsenstein, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol.11 (3), pp. 459–468, 1994.

    Google Scholar 

  29. M. Krivânek, Computing the nearest neighbor interchange metric for unlabeled binary trees is NP-complete, Journal of Classification, 3, pp. 55–60, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  30. V. King and T. Warnow, On Measuring the nni distance between two evolutionary trees, DIMACS mini workshop on combinatorial structures in molecular biology, Rutgers University, Nov 4, 1994.

    Google Scholar 

  31. S. Khuller, Open Problems: 10, SIGACT News, 24 (4), p. 46, Dec 1994.

    MathSciNet  Google Scholar 

  32. W.J. Le Quesne, The uniquely evolved character concept and its cladistic application, Syst. Zool., 23, pp. 513–517, 1974.

    Article  Google Scholar 

  33. M. Li, J. Tromp, and L.X. Zhang, On the nearest neighbor interchange distance between evolutionary trees, Journal of Theoretical Biology, 182, pp. 463–467, 1996.

    Article  Google Scholar 

  34. M. Li and L. Zhang, Better Approximation of Diagonal-Flip Transformation and Rotation Transformation, Manuscript, 1997.

    Google Scholar 

  35. G. W. Moore, M. Goodman and J. Barnabas, An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets, Journal of Theoretical Biology, 38, pp. 423–457, 1973.

    Article  Google Scholar 

  36. J. Pallo, On rotation distance in the lattice of binary trees, Infor. Proc. Letters, 25, pp. 369–373, 1987.

    Article  MathSciNet  Google Scholar 

  37. D. F. Robinson, Comparison of labeled trees with valency three, Journal of Combinatorial Theory,Series B, 11, pp. 105–119, 1971.

    Article  MathSciNet  Google Scholar 

  38. N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, pp. 406–425, 1987.

    Google Scholar 

  39. D. Sankoff, Minimal mutation trees of sequences, SIAM J. Appl. Math., 28, pp. 35–42, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. Sankoff and J. Kruskal (Eds), Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison, Addison Wesley, Reading Mass., 1983.

    Google Scholar 

  41. D. Sleator, R. Tarjan, W. Thurston, Rotation distance, triangulations, and hyperbolic geometry, J. Amer. Math. Soc., 1, pp. 647–681, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. Sleator, R. Tarjan, W. Thurston, Short encodings of evolving structures, SIAM J. Discr. Math., 5, pp. 428–450, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  43. K.C. Tai, The tree-to-tree correction problem, J. ACM, 26, pp. 422–433, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  44. A. von Haseler and G.A. Churchill, Network models for sequence evolution, J. Mol. Evol., 37, pp. 77–85, 1993.

    Google Scholar 

  45. K. Wagner, Bemerkungen zum vierfarbenproblem, J. Deutschen Math.Verin., 46, pp. 26–32, 1936.

    Google Scholar 

  46. M. S. Waterman, Introduction to computational biology: maps, sequences and genomes, Chapman Sc Hall, 1995.

    MATH  Google Scholar 

  47. M. S. Waterman and T. F. Smith, On the similarity of dendrograms, Journal of Theoretical Biology, 73, pp. 789–800, 1978.

    Article  MathSciNet  Google Scholar 

  48. K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between trees and related problems, SIAM J. Comput. 18, pp. 12451–262, 1989.

    Article  MathSciNet  Google Scholar 

  49. K. Zhang, J. Wang and D. Sasha, On the editing distance between undirected acyclic graphs, International J. of Foundations of Computer Science 7 (13), March 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

DasGupta, B. et al. (1998). Computing Distances between Evolutionary Trees. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics