Skip to main content

Characterization of Monotone Operators by Using a Special Class of Preinvex Functions

  • Chapter
  • 360 Accesses

Part of the book series: Applied Optimization ((APOP,volume 59))

Abstract

For every operator F: R nR n the scalar increment ◊F(x):R nR will be introduced at every point xR n, by the relation

F(x)(u) = <F(x + u) - F(x), u>

where <. , .> denotes the canonical scalar product of R n. If F is hemicontinuous, it will be proved that F is monotone (with respect to duality) if and only if its scalar increment is preinvex in every point of R n. A special class of preinvex functions, called starvex functions, will be introduced. In the differentiable case this class of preinvex functions coincide with the corresponding class of invex functions. In the noncontinuoUS case it will be shown that the monotonicity of F coincides with the starvexity of its scalar increment at every point of R n. If F is differentiable the monotonicity of F will be proved to be equivalent with the invexities of all its scalar increments. Finally, a characterization for strictly monotone operators will be given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. Craven, Invex functions and constrained local minima, Bull. Austral. Math. Soc. 24 (1981), 357–366.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. D. Craven and B. M. Glover, Invex functions and duality, J. Austral. Math. Soc. (Series A) 39 (1985), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, Journal of Mathematical Analysis and Applications 80 (1981), 545–550.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Jeyakumar, Strong and weak invexity in mathematical programming, Methods Oper. Res. 55 (1985), 109–125.

    MathSciNet  MATH  Google Scholar 

  5. S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications 189 (1995), 901–908.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Z. Németh, A scalar derivative for vector functions, Rivista di Matematica Pura ed Applicata N.10 (1992), 7–24.

    MATH  Google Scholar 

  7. S. Z. Németh, Scalar derivatives and spectral theory, Mathematica, Thome 35 (88) N.1, (1993), 49–58.

    MathSciNet  MATH  Google Scholar 

  8. R. Pini, Convexity along curves and invexity, Optimization 29 (1994), 301–309.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Pini, Invexity and generalized convexity, Optimization 22 (1991)4, 513–525.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Rapcsák, Smooth Nonlinear Optimization in R n, Kluwer Academic Publishers (1997).

    Google Scholar 

  11. E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, I: Projections on convex sets, II: Spectral theory, Contrib. Nonlin. Functional Analysis, Proc. Sympos. Univ. Wisconsin, Madison (1971) 237–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Németh, S.Z. (2001). Characterization of Monotone Operators by Using a Special Class of Preinvex Functions. In: Giannessi, F., Pardalos, P., Rapcsák, T. (eds) Optimization Theory. Applied Optimization, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0295-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0295-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0009-6

  • Online ISBN: 978-1-4613-0295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics