Skip to main content

Investment management in uncertainty

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 55))

Abstract

It is still not easy to define the content of the Financial Management of Companies but, even though we have no desire to create restrictions, we shall conceptualize it as the scientific discipline which attempts to optimally assign the scarce financial resources in a company both from the external and internal perspectives, that is to say, financial markets and financial management, respectively. This definition follows the most accepted meaning of Economy as the science which studies human behaviour as a relation between ends and scarce means which have alternative uses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Suárez (1998, 28)

    Google Scholar 

  2. Femández (1991, 346–347)

    Google Scholar 

  3. Kaufrnarm and Gil (1986,70)

    Google Scholar 

  4. \(\mathop q\limits_ \sim\) and \(\mathop r\limits_ \sim\)are positive fuzzy numbers, that is to say, \(\forall a \in \left[ {0,1} \right],\underline {q\left( a \right)} r\underline {\left( a \right)} >0\)

    Google Scholar 

  5. For the lower limit \(\mathop E\nolimits_l = \frac{{\underline {\mathop C\nolimits^* \left( a \right)} - \underline {C\left( a \right)} }}{{\underline {C\left( a \right)} }}\)and will be calculated for upper limits in a simila way.

    Google Scholar 

  6. Terceño, Márquez and Belvis (1997)

    Google Scholar 

  7. Not all methods for comparing fuzzy numbers are transitive, in the sense that the condition \(\mathop A\limits_ \sim >\mathop B\limits_ \sim\)and\(\mathop B\limits_ \sim >\mathop C\limits_ \sim\)may be fulfilled, and yet \(\mathop A\limits_ \sim >\mathop C\limits_ \sim\)may not be true. As we have said, this means it is not always possible to carry out either a complete comparison, or, consequently, a total ranking of all the fuzzy numbers in which we are interested.

    Google Scholar 

  8. Comparison of n fuzzy numbers requires n(n-1)/2 comparative operations, which presents operational problems if n is a high number.

    Google Scholar 

  9. Any comparison problem can be solved when taken as a ranking problem. llte opposite is not always true.

    Google Scholar 

  10. In addition to those cited in the text, the most Widely-known methods in fuzzy literature may be found in Freeling (1980, 341–354), McCahon and Lee (1990, 159–181) and Kitainik (1993, 109–136), although this list does not pretend to be exhaustive.

    Google Scholar 

  11. As a translation of ‘indice de consentimiento’, usecl by Kaufmann and Gil (1987).

    Google Scholar 

  12. In some ways, the index of consent that we have presented is a method of ordering fuzzy numbers.

    Google Scholar 

  13. We are aware that the NPV and IRR models for investment selection as presented represent another series of limitations (choice of the calculation and reference interest rates respectively, reinvesnnent of intermediate cash flows at the interest rate or at the IRR itself, effects of inflation and taxes, inconsistency of the IRR criterion, interaction between projects, interrelation between the investment projects and their financing, optimum time distribution of the investments, etc.) We will focus the chapter exclusively on the inconveniences specified.

    Google Scholar 

  14. In the example, we got the same ranking for a*=0 as for a*=0,2 by all the ranking methods used. Thus the thre,e investment projects under consideration offer results that are easily differentiated. Clearly, it does not have to be that way, and will depend on the actual form of the membership functions of the fuzzy numbers to be ranked.

    Google Scholar 

  15. We take the triangular approximation of the result obtained, for its ease of operation and for the minimal error made in its calculation.

    Google Scholar 

  16. It is generally accepted that the value of a company can be identified with the discounted value of future dividends which participation in the capital will offer. In this way, \(\sum\nolimits_{\forall i} {\mathop w\nolimits_i } \mathop D\nolimits_i\)can be understood as the increase in the company’s value which will result from the current investment progranune.

    Google Scholar 

  17. \(\mathop A\limits_ \sim \leqslant {}_{a*}\mathop B\limits_ \sim\)in the strict sense if \(\overline {A\left( {\mathop a\nolimits^* } \right)} \leqslant \underline {B\left( {\mathop a\nolimits^* } \right)}\)However, this is not usually taken into consideration in PLP as it is an excessively restrictive criterion.

    Google Scholar 

Bibliography

  • Adamo, J.M. (1980). “Fuzzy decision trees”. Fuzzy Sets and Systems 4.

    Google Scholar 

  • Baumol, W.J.; Quandt, R.E. (1966). “Investment and discount rate under capital rationing-a programming approach”. The Economic Journal. Vol. LXXV, No 298.

    Google Scholar 

  • Bellman, R.E.; Zadeh, L.A. (1970). “Decisión Making in a fuzzy environment”. Management Sciencies5.

    Google Scholar 

  • Biacino, L.; Simonelli, M.R. (1991). “The internal rate of return of fuzzy cash flow”. Rivista di matematica per le scienze economiche a sociali, No 2.

    Google Scholar 

  • Buckley, J.J (1992). “Solving fuzzy equations in economics and finance”. Fuzzy Sets and Systems 48.

    Google Scholar 

  • Buckley, J.J. (1987). “The fuzzy mathematics of finance”. Fuzzy Sets and Systems, Vol 21.

    Google Scholar 

  • Buckley, J.J; Qu, Y. (1990). “On using a-cuts to evaluate fuzzy equations”. Fuzzy Sets and Systems 38.

    Google Scholar 

  • Buckley, J.J; Qu, Y. (1991). “Solving fuzzy equations: A new solution concept” Fuzzy Sets and Systems 39.

    Google Scholar 

  • Campos, L.M.; González, A. (1989). “A subjective approach for ranking fuzzy numbers”. Fuzzy Sets and Systems, 29.

    Google Scholar 

  • Dubois, H.; Prade, D. (1983). “Ranking fuzzy numbers in the setting of possibility theory”. Information Sciencies 30.

    Google Scholar 

  • Fama, E. (1978). “The effect of a firm’s investment and financing decisions on the welfare of its security holders”. American Economic Review,No. 68.

    Google Scholar 

  • Fernández Blanco, M. et al. (1991). Dirección Financiera de la Empresa. Pirámide. Madrid.

    Google Scholar 

  • Freeling, A.N.S. (1980). “Fuzzy sets and decision analysis”. IEEE Transactions on Systems, Man and Cybernetics, Vol. 10.

    Google Scholar 

  • Fuller, R. (1986). “On a spetial type of fuzzy linear programming”. Colloquia Mathematics Societatis Janos Bolyai 49.

    Google Scholar 

  • Gil Aluja, J. (1997). Invertir en la incertidumbre. Pirámide. Madrid.

    Google Scholar 

  • Gil Aluja, J. (1995). “Towards a new concept of economic research”. Fuzzy Economic Review, No. 0.

    Google Scholar 

  • Jiménez, M. (1996). “La teoria de la posibilidad aplicada a1 cálculo financiero en incertidumbre”. Actualidad Financiera,No 3.

    Google Scholar 

  • Kaufmann, A.; Gil, J.; Terceño, A.. (1994). Matemática para la economίa y la gestión de empresas. Foro Científico. Barcelona.

    Google Scholar 

  • Kaufmann, A.; Gil, J. (1987). Técnicas operativas de gestión para el tratamiento de la incertidumbre. Hispano Europea. Madrid.

    Google Scholar 

  • Kaufmann, A.; Gil, J. (1986). Introducción de la teorίa de los subconjuntos borrosos a la gestión de las empresas. Santiago de Compostela. Milladoiro.

    Google Scholar 

  • Kaufmann, A.; Gupta, M.M. (1985). Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold. New York.

    Google Scholar 

  • Kitainik, L. (1993). Fuzzy Decision Procedures with Binary Relations. Towards a Unified Theory. Kluwer Academic Publishers. Norwell. Massachusetts.

    Google Scholar 

  • Lai, Y.J.; Hwang, C.L.. (1992). “A new approach to some possibilistic linear programming problem”. Fuzzy sets and systems,Vol. 49.

    Google Scholar 

  • Lai, Y.L; Hwang, C.L. (1992). Fuzzy mathematical programming. Springer-Verlag. Berlin.

    Google Scholar 

  • Lai, Y.L.; Hwang, C.L. (1996). Fuzzy multiple objective decision making. Springer-Verlag. Berlin.

    Google Scholar 

  • Lone, J.H.; Savage, L.J. (1955). “Three problems in Rationing Capital”. Journal of Business. October.

    Google Scholar 

  • Mao, J. (1977). Análisis Financiero. Ateneo. Buenos Aires.

    Google Scholar 

  • Masse, P. (1963). La elección de inversiones. Sagitario. Barcelona.

    Google Scholar 

  • McCahon, C.S.; Lee. E.S. (1990). “Computing fuzzy numbers: the proportion of the optimum method”. International Journal ofApproximate Reasoning, No. 4.

    Google Scholar 

  • Ramik, J.; Rimanek, J. (1985). “Inequality relation between fuzzy numbers and its use in fuzzy optimization”. Fuzzy sets and systems,Vol 16.

    Google Scholar 

  • Romero, M.; Martίn, E. (1983). “Programación de inversiones en un entorno borroso”. Gestión Científica. Vol 1.

    Google Scholar 

  • Rommelfanger, H.; Hanuscheck, R.; Wolf, J. (1989) “Linear programming with fuzzy objectives”. Fuzzy sets and systems, Vol. 29.

    Google Scholar 

  • Rommerfanger, H. (1989). “Interactive decision making in fuzzy linear optimization problems”. EuropeAn journal of operational research 41.

    Google Scholar 

  • Suárez Suárez, A.S. (1994). Decisiones óptimas de inversión y financiación. Pirámide. Madrid.

    Google Scholar 

  • Tanaka, H.; Asai, K. (1984). “Fuzzy linear programming with fuzzy numbers”. Fuzzy sets and systems, Vol. 13.

    Google Scholar 

  • Terceño, A.; Barberá, G.; de Andrés, J.. (1997). “Análisis y selección de préstamos en condiciones de incertidumbre”. Actas del IV Congreso de SIGEF. Cuba.

    Google Scholar 

  • Terceño, A.; Marquez, N.; Belvis, C. (1997). “Un estudio sobre las aproximaciones a las expresiones financieras inciertas”. Actas del IV Congreso de SIGEF. Cuba.

    Google Scholar 

  • Terceño, A.; Sáez, J.; Barberá, M.G.; Ortí, F.; de Andrés, J.; Belvis, C. (1997). Matemática Financiera. Pirámide. Madrid.

    Google Scholar 

  • Weingartner, H.M. (1966). “Capital budgeting of interrelated projects: survey and synthesis”. Management Science. Vol. XII, No 7.

    Google Scholar 

  • Yager, R.R. (1978). “Ranking fuzzy subsets over the unit interval”. Proceedings of the 1978 CDC. 1435–1437.

    Google Scholar 

  • Yager, R.R. (1980). “On choosing between fuzzy subsets”. Kybernetes, No. 9.

    Google Scholar 

  • Yager, R.R. (1981). “A procedure for ordering fuzzy subsets of the unit interval”. Information Science, No. 24.

    Google Scholar 

  • Yuan, Y. (1991). “Criteria for evaluating fuzzy ranking methods”. Fuzzy Sets and Systems, Vol. 44.

    Google Scholar 

  • Zhu, Q. Y; Lee, E.S. (1992). “Comparison and ranking of fuzzy numbers”. En Kacprzyk, J.; Fedrizzi, M. Eds. Fuzzy Regression Analysis. Omnitech Press Warsaw and Physica-Verlag Heidelberg. Warsaw. 21–44.

    Google Scholar 

  • Zimmermann, H.J. (1976). “Description and optimization of fuzzy system”. International journal of general system 2.

    Google Scholar 

  • Zimmermann, H.J. (1985). Fuzzy set theory and its applications. Kluwer academic publishers. Dordrecht

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Terceño, A., de Andrés, J., Barberà, M.G., Lorenzana, T. (2001). Investment management in uncertainty. In: Gil-Aluja, J. (eds) Handbook of Management under Uncertainty. Applied Optimization, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0285-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0285-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7978-2

  • Online ISBN: 978-1-4613-0285-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics