Advertisement

Fixed Points and Cycles

  • Peter J. Cameron
Part of the Developments in Mathematics book series (DEVM, volume 3)

Abstract

This paper presents a tapas of results on fixed points and cycles in permutation groups, arising in such disparate areas as matrix group recognition, Brauer groups, Latin squares, and relational databases.

Keywords

Symmetric Group Permutation Group Random Element Stirling Number Cycle Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469–514.MathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Bonizzoni, G. Della Vedova, A. Leporati, D. Lucarella and G. Mauri, A unifying framework to characterize the power of query languages, preprint.Google Scholar
  3. [3]
    N. Boston, W. Dabrowski, T. Foguel, P. J. Gies, J. Leavitt, D. T. Ose and D.A. Jackson, The proportion of fixed-point-free elements of a transitive permutation group, Commun. Algebra 21 (1993), 3259–3275.CrossRefGoogle Scholar
  4. [4]
    P.J. Cameron, Almost all quasigroups have rank 2, Discrete Math. 106/107 (1992), 111–115.CrossRefGoogle Scholar
  5. [5]
    P.J. Cameron, Cycle-closed permutation groups, J. Algebraic Combin. 5 (1996), 315–322.MathSciNetGoogle Scholar
  6. [6]
    P.J. Cameron, Partitions and permutations, preprint.Google Scholar
  7. [7]
    P.J. Cameron and A.M. Cohen, On the number of fixed point free elements of a permutation group, Discrete Math. 106/107 (1992), 135–138.MathSciNetCrossRefGoogle Scholar
  8. [8]
    P.J. Cameron, M.R. Giudici, G.A. Jones, W.M. Kantor, M. Klin, D. Maruśić and L.A. Nowitz, Transitive permutation groups without semiregular subgroups, in preparation.Google Scholar
  9. [9]
    P.J. Cameron and D.E. Taylor, Stirling numbers and affine equivalence, Ars Combin. 20B (1985), 3–14.MathSciNetGoogle Scholar
  10. [10]
    J.D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205.MathSciNetCrossRefGoogle Scholar
  11. [11]
    B. Fein, W.M. Kantor and M. Schacher, Relative Brauer groups, II, J. Reine Angew. Math. 328 (1981), 39–57.MathSciNetGoogle Scholar
  12. [12]
    H. Fripertinger, Cycle indices of linear, affine, and projective groups, Linear Algebra Appl. 263 (1997), 133–156.MathSciNetCrossRefGoogle Scholar
  13. [13]
    D.A. Gewurz, Reconstruction of permutation groups from their Parker vectors, J. Group Theory 3 (2000), 271–276.MathSciNetCrossRefGoogle Scholar
  14. [14]
    D.A. Gewurz, Parker vectors and cycle indices of permutation groups, in prepa-ration.Google Scholar
  15. [15]
    M.R. Giudici, Quasiprimitive permutation groups without semiregulaг sub-groups, in preparation.Google Scholar
  16. [16]
    R. Haggkvist and J.C.M. Janssen, All-even latin squares, Discrete Math. 157 (1996), 199–206MathSciNetCrossRefGoogle Scholar
  17. [17]
    J.P.S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl. 36 (1981), 141–155.MathSciNetCrossRefGoogle Scholar
  18. [18]
    T. Luczak and L. Pyber, On random generation of the symmetric group, Corn-bin. Probab. Comput. 2 (1993), 505–512.MathSciNetCrossRefGoogle Scholar
  19. [19]
    A. McIver and P.M. Neumann, Enumerating finite groups, Quart. J. Math. (2) 38 (1987), 473–488.MathSciNetCrossRefGoogle Scholar
  20. [20]
    P.M. Neumann and C.E. Praeger, A recognition algorithm for special linear groups, Proc. London Math. Soc. (3) 65 (1992), 555–603.MathSciNetCrossRefGoogle Scholar
  21. [21]
    P.M. Neumann and C.E. Praeger, Derangements and eigenvalue-free elements in finite classical groups, J. London Math. Soc. (2) 58 (1999), 564–586.MathSciNetGoogle Scholar
  22. [22]
    G.-C. Rota, On the foundations of combinatorial theory, I: Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.MathSciNetCrossRefGoogle Scholar
  23. [23]
    D.E. Taylor, The Geometry of the Classical Groups, Helderman, Berlin, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Peter J. Cameron
    • 1
  1. 1.School of Mathematical SciencesQueen Mary and Westfield CollegeLondonUK

Personalised recommendations