Skip to main content

SDP Relaxations in Combinatorial Optimization from a Lagrangian Viewpoint

  • Chapter
Advances in Convex Analysis and Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 54))

Abstract

A successful technique for some problems in combinatorial optimization is the so-called SDP relaxation, essentially due to L. Lovász, and much developed by M. Goemans and D.P. Williamson. As observed by S. Poljak, F. Rendl and H. Wolkowicz, this technique can be interpreted from the point of view of Lagrangian duality. A central tool for this is dualization of quadratic constraints, an operation pioneered by N.Z. Shor. We synthesize these various operations, in a language close to that of nonlinear programming. Then we show how the approach can be applied to general combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Aubin and I. Ekeland. Estimates of the duality gap in nonconvex optimization. Mathematics of Operations Research, 1 (3): 225–245, 1976.

    Article  MathSciNet  Google Scholar 

  2. I. Ekeland and R. Temam. Convex Analysis and Variational Problems. Classics in Applied Mathematids 28. SIAM Publications, 1999.

    Google Scholar 

  3. J.E. Falk. Lagrange multipliers and nonconvex programs. SIAM Journal on Control, 7 (4): 534–545, 1969.

    Article  MathSciNet  Google Scholar 

  4. S. Feltenmark and K. C. Kiwiel. Dual applications of proximal bundle methods, including lagrangian relaxation of nonconvex problems. SIAM Journal on Optimization, 10 (3): 697–721, 2000.

    Article  MathSciNet  Google Scholar 

  5. T. Fujie and M. Kojima. Semidefinite protramming relaxation for nonconvex quadratic programs. Journal of Global Optimization, 10: 367–380, 1997.

    Article  MathSciNet  Google Scholar 

  6. C. Garrod and J.K. Percus. Reduction of the N-particle variational problem. Journal of Mathematical Physics, 5(12), 1964.

    Article  MathSciNet  Google Scholar 

  7. A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Programming Study, 2: 82–114, 1974.

    MathSciNet  Google Scholar 

  8. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 6: 1115–1145, 1995.

    Article  MathSciNet  Google Scholar 

  9. C. Helmberg, F. Rendl, and R. Weismantel. Quadratic knapsack relaxations using cutting planes and semidefinite programming In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and Combinatorial Optimization V, volume 1084 of Lecture Notes in Computer Science, pages 175–189. Springer Verlag, Berlin, 1996.

    Google Scholar 

  10. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993.

    Google Scholar 

  11. R.A. Horne and Ch.R. Johnson. Matrix analysis. Cambridge University Press, 1989. (New edition, 1999 ).

    Google Scholar 

  12. D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

    Article  MathSciNet  Google Scholar 

  13. D.E. Knuth. The sandwich theorem. Electronic Journal of Combinatorics, 1(A1), 1994.

    Google Scholar 

  14. F. Körner. A tight bound for the boolean quadratic optimization problem and its use in a branch and bound algorithm. Optimization, 19 (5): 711–721, 1988.

    Article  MathSciNet  Google Scholar 

  15. F. Körner and C. Richter. Zur effektiven lösung von booleschen, quadratischen optimierungsproblemen. Numerische Mathematik, 40: 99–109, 1982.

    Article  MathSciNet  Google Scholar 

  16. C. Lemaréchal, Yu. Nesterov, and F. Oustry. Duality gap analysis for problems with quadratic constraints, 2001. In preparation.

    Google Scholar 

  17. C. Lemaréchal and F. Oustry. Semi-definite relaxations and lagrangian duality with application to combinatorial optimization. Rapport de Recherche 3710, INRIA, 1999. Submitted to Mathematical Programming.

    Google Scholar 

  18. C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications. Mathematical Programming, 2001. to appear.

    Google Scholar 

  19. L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, IT 25: 1–7, 1979.

    Article  Google Scholar 

  20. L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

    Article  MathSciNet  Google Scholar 

  21. Yu.E. Nesterov, H. Wolkowicz, and Y.Y Ye. Semidefinite programming relaxations of nonconvex quadratic optimization. In Lieven Vandenberghe R. Saigal and H. Wolkovicz, editors, Han-book on Semidefinite Programming. Theory, Algorithms and Applications. Kluwer, 2000.

    Google Scholar 

  22. P. Pardalos and H. Wolkowicz. Topics in Semidefinite and Interior-Point Methods. Fields Institute Communications Series 18. American Mathematical Society, 1998.

    Google Scholar 

  23. S. Poljak, F. Rendi, and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-quadratic programming. Journal of Global Optimization, 7: 51–73, 1995.

    Article  Google Scholar 

  24. B.N. Pshenichnyi The Linearization Method for Constrained Optimization. Number 22 in Computational Mathematics. Springer-Verlag, 1994.

    Google Scholar 

  25. N.Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics, 23 (6): 731–734, 1987.

    Article  Google Scholar 

  26. N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems Sciences, 25: 1–11, 1987.

    MathSciNet  Google Scholar 

  27. N.Z. Shor. Dual estimates in multiextremal problems. Journal of Global Optimization, 2: 411–418, 1992.

    Article  MathSciNet  Google Scholar 

  28. N.Z. Shor and A.S. Davydov. Method of opbtaining estimates in quadratic extremal probems with boolean variables. Cybernetics, (2): 207–211, 1985.

    Article  Google Scholar 

  29. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38 (1): 49–95, 1996.

    Article  MathSciNet  Google Scholar 

  30. H. Wolkowicz and Z. Zhao. Semidefinite relaxations for the graph partitioning problem. Discrete Applied Mathematics, 96–97: 461–479, 1999.

    Article  MathSciNet  Google Scholar 

  31. Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. Journal of Combinatorial Optimization, 2 (1): 71–109, 1998.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lemaréchal, C., Oustry, F. (2001). SDP Relaxations in Combinatorial Optimization from a Lagrangian Viewpoint. In: Hadjisavvas, N., Pardalos, P.M. (eds) Advances in Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0279-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0279-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6942-4

  • Online ISBN: 978-1-4613-0279-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics