Skip to main content

A Pivoting-Based Heuristic for the Maximum Clique Problem

  • Chapter
Advances in Convex Analysis and Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 54))

Abstract

We tackle the maximum clique problem by reformulating it in terms of a standard quadratic program, which derives from a theorem of Motzkin and Straus. A heuristic is then obtained by solving with Lemke’s method the linear complementarity problem that arises from the KKT conditions of the QP. We have added a pivoting rule that exploits degeneracy to reach good suboptimal solutions. Very positive results have been obtained on the DIMACS benchmark graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bomze, I. M. (1997). Evolution towards the maximum clique. J. Global Optim., 10: 143–164.

    Article  MathSciNet  Google Scholar 

  2. Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum clique problem. In Du, D.-Z. and Pardalos, P. M., editors, Handbook of Combinatorial Optimization - suppl. vol. A, pages 1–74. Kluwer Academic Publishers.

    Google Scholar 

  3. Bomze, I. M., Budinich, M., Pelillo, M., and Rossi, C. (2000). A new “annealed” heuristic for the maximum clique problem. In Pardalos, P. M., editor, Approximation and Complexity in Numerical Opti-mization. Kluwer Academic Publishers.

    Google Scholar 

  4. Cottle, R. W., Pang, J., and Stone, R. E. (1992). The Linear Complementarity Problem. Academic Press, Boston, MA.

    Google Scholar 

  5. Gibbons, L. E., Hearn, D. W., and Pardalos, P. M. (1996). A continuous-based heuristic for the maximum clique problem. In Johnson, D. and Trick, M. A., editors, Cliques, colouring and satisfiability, volume 26 of DIMACS Series, pages 103–124. AMS.

    Google Scholar 

  6. Motzkin, T. S. and Straus, E. G. (1965). Maxima for graphs and a new proof of a theorem of Turán. Canada J. Math., 17 (4): 533–540.

    Article  MathSciNet  Google Scholar 

  7. Pardalos, P. M. and Phillips, A. T. (1990). A global optimization approach for solving the maximum clique problem. Int. J. of Comput. Math., 33: 209–216.

    Article  Google Scholar 

  8. Pelillo, M. (2000). Replicator dynamics in combinatorial optimization. In Pardalos, P. M. and Floudas, C. A., editors, Encyclopedia of Optimization. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  9. Pelillo, M. and Jagota, A. (1995). Feasible and infeasible maxima in a quadratic program for the maximum clique problem. J. Artif. Neural Networks, 2 (4): 411–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Massaro, A., Pelillo, M. (2001). A Pivoting-Based Heuristic for the Maximum Clique Problem. In: Hadjisavvas, N., Pardalos, P.M. (eds) Advances in Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0279-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0279-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6942-4

  • Online ISBN: 978-1-4613-0279-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics