Skip to main content

Superasymptotic Perturbation Analysis of the Kelvin-Helmholtz Instability of Supersonic Shear Layers

  • Chapter
Differential Equations and Nonlinear Mechanics

Part of the book series: Mathematics and Its Applications ((MAIA,volume 528))

  • 548 Accesses

Abstract

A global asymptotic analysis of the traveling wave Kelvin-Helmholtz instability of a supersonic, finite-width velocity shear layer is carried out. The resulting solution, comprising a composite WKBJ and boundary-layer solution, satisfying outgoing, spatially damping radiative wave boundary conditions, has important applications in elucidating the energy transfer between the fluid and the unstable traveling wave solutions. Limitations in the use of this global asymptotic solution arise from the well-known directional character of the “connection formulae” at the turning points of the potential. In order to overcome these limitations, a superasymptotic analysis is developed based on recent work of Dingle, Berry and others. The structure of the resulting traveling wave solutions agrees closely with previously computed numerical solutions. In addition, the condition for the occurrence of the traveling wave instability is derived, and the absence of this mode in compressible tangential velocity discontinuities is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sen, A.K., Stability of the magnetosphere boundary, Planetary and Space Science 13, 1965, 131–141.

    Article  Google Scholar 

  2. Mckenzie, J.F., Hydromagnetic oscillations of the geomagnetic tail and plasma sheet, J. Geophysical Res. 75, 1970, 5331–5339.

    Article  Google Scholar 

  3. Southwood, D.J., Some features of the field line resonances in the magnetosphere, Planetary and Space Science 22, 1974. 1024–1032.

    Article  Google Scholar 

  4. Chen, L. and Hasegawa, A., A theory of long-period magnetic pulsations, J. Geophysical Res. 79, 1974, 1024–1032.

    Article  Google Scholar 

  5. Scarf, F.L., Kurth, W.S., Gumett, D.A., Bridge, H.S., and Sullivan, J.D., Jupiter tail phenomena upstream from Saturn. Nature 292, 1981, 585–586.

    Article  Google Scholar 

  6. Dborowolny, H. and D’Angelo, N., Wave motion in type I comet tails, in Cosmic Plasma Physics K. Schindler, ed., Plenum, New York, 1972.

    Google Scholar 

  7. Ershkovich, A.I., Nusnov, A.A., and Chernikov, A.A., Oscillations of type I comet tails, Planetary and Space Science 20, 1972, 1235–1243

    Article  Google Scholar 

  8. Ershkovich, A.I., Nusnov, A.A., and Chernikov, A.A., Oscillations of type I comet tails, Nonlinear waves in type I comet tails 21, 1973, 663–673.

    Google Scholar 

  9. Turland, B.D. and Scheuer, P.A.G., Instabilities of Kelvin-Helmholtz type for relativistic streaming, Monthly Notices Roy. Astron. Soc. 176, 1976, 421–441.

    MATH  Google Scholar 

  10. Blandford, R.D. and Pringle, J.E., Kelvin-Helmholtz instability of relativistic beams, Monthly Notices Roy. Astron. Soc. 176, 1976, 443–454.

    MATH  Google Scholar 

  11. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover originally published 1961, Oxford, Clarendon, New York, 1981

    Google Scholar 

  12. Syrovatskii, A., The Helmholtz instability, Soviet Physics Uspekhi 62, 1957, 247–253

    Google Scholar 

  13. Northrop, T.G., Helmholtz instability of a plasma, Physical Review Second Series, 103, 1956, 1150–1154.

    MATH  Google Scholar 

  14. Gerwin, R.A., Stablity of the interface between two fluids in relative motion, Rev. Modern Phys. 40, 1968, 652–658.

    Article  MATH  Google Scholar 

  15. Ray, T.P. and Ershkovich, A.I. Kelvin-Helmholtz instabilities of magnetized shear layers, Monthly Notices Roy. Atron Soc. 204, 1983, 821–826.

    Google Scholar 

  16. Miura, A., Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction, J. Geophysical Res. 89, 1984, 801–818.

    Article  Google Scholar 

  17. Choudhury, S. Roy, and Lovelace, R.V., On the Kelvin-Helmholtz instabilities of supersonic shear layers, Astrophysical J. 283, 1984, 331–342

    Article  Google Scholar 

  18. Choudhury, S. Roy, and Lovelace, R.V., On the Kelvin-Helmholtz instabilities of supersonic shear layers, On the Kelvin-Helmholtz instabilites of high-velocity magnetized shear layers 302, 1986, 188–199

    Google Scholar 

  19. Miura, A. and Pritchett, P.L., Nonlinear stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophysical Res. 87, 1982, 7431–7444.

    Article  Google Scholar 

  20. Choudhury, S. Roy, Kelvin-Helmholtz instabilites of supersonic, magnetized shear layers, J. Plasma Phys. 35, 1986, 375–392.

    Article  Google Scholar 

  21. Uberoi, C., On the Kelvin-Helmholtz instabilites of structured plasma layers in the magnetosphere, Planetary and Space Science 34, 1985, 1223–1227.

    Article  Google Scholar 

  22. Fujimota, M. and Terasawa, T., Ion inertia effect on the Kelvin-Helmholtz instability, J. Geophysical Res. 96, 1991, 15725–15734.

    Article  Google Scholar 

  23. Sharma, A.C. and Shrivastava, K.M., Magnetospheric plasma waves, Astrophys. Space Sci. 200, 1993, 107–115.

    Article  MATH  Google Scholar 

  24. Malik, S.K. and Singh, M., Chaos in Kelvin-Helmholtz instability in magnetic fluids, Phys. Fluids A 4, 1992, 2915–2922.

    Article  MathSciNet  MATH  Google Scholar 

  25. Choudhury, S. Roy, and Patel, V.L., Kelvin-Helmholtz instabilites of high-velocity, magnetized anisotropic shear layers, Phys. Fluids 28, 1985, 3292–3301.

    Article  MATH  Google Scholar 

  26. Duhau, S., Gratton, F., and Gratton, J., Hydromagnetic oscillations of a tangential discontinuity in the CGL approximation, Phys. Fluids 13, 1970, 1503–1509.

    Article  MATH  Google Scholar 

  27. Duhau, S., Gratton, F., and Gratton, J., Radiation of hydromagnetic waves from a tangential velocity discontinuity, Phys. Fluids 14, 1971, 2067–2071.

    Article  Google Scholar 

  28. Duhau, S. and Gratton, J., Effect of compressibility on the stability of a vortex sheet in an ideal magnetofluid, Phys. Fluids 16, 1972, 150–152.

    Article  Google Scholar 

  29. Rajaram, R., Kalra, G.L., and Tandon, J.N., Discontinuities and the magnetosphere phenomena, J. Atm. Terr. Phys. 40, 1978, 991–1000.

    Article  Google Scholar 

  30. Rajaram, R., Kalra, G.L., and Tandon, J.N., Discontinuities in the magnetosphere, Astrophys. Space Sci. 67, 1980, 137–150.

    Article  MathSciNet  Google Scholar 

  31. Talwar, S.P., Hydromagnetic stability of the magnetospheric boundary, J. Geophysical Res. 69, 1964, 2707–2713.

    Article  Google Scholar 

  32. Talwar, S.P., Kelvin-Helmholtz instability in an anisotropic plasma, Phys. Fluids 8, 1965, 1295–1299.

    Google Scholar 

  33. Pu, Zu-Yin, Kelvin-Helmholtz instability in collisionless space plasmas, Phys. Fluids B 1, 1989, 440–447.

    Article  Google Scholar 

  34. Brown, K. and Choudhury, S. Roy, Kelvin-Helmholtz Instabilities of High-Velocity Magnetized Shear Layers with Gerneralized Polytrope Laws, Quart. Appl. Math., in press

    Google Scholar 

  35. Brown, K. and Choudhury, S. Roy, Quasiperiodicity and Chaos in the Nonlinear Evolution of the Kelvin-Helmholtz Instability of Supersonic Anisotropie Tangential Velocity Discontinutities, J. Nonlin. Sci., submitted.

    Google Scholar 

  36. Nayfeh, A.H., Perturbation Methods, John Wiley & Sons, New York, 1973, 315–318 and 335–342

    MATH  Google Scholar 

  37. Pearson, C.E., Handbook of Applied Mathematics. Van Nostrand Reinhold, New York, 1983, 667.

    MATH  Google Scholar 

  38. Dingle, R.B., Asymptotic Expansions: Their Derivation and Interpretation, Academic, London, 1973.

    MATH  Google Scholar 

  39. Berry, M.V. and Howls, C.J., Hyperasymptotics, Proc. Roy. Soc. London A430, 1990, 657–667.

    MathSciNet  Google Scholar 

  40. Berry, M.V., Asymptotics, Superasymptotics, Hyperasymptotics, in Asymptotics Beyond All Orders, H. Segur, S. Tanveer and H. Levine Eds., Plenum, New York, 1991.

    Google Scholar 

  41. Boyd, J.P., Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Kluwer, Dordrecht, 1998.

    Book  MATH  Google Scholar 

  42. Acheson, D.J., On over-reflexion, J. Fluid Mech. 77, 1976, 433–472.

    Article  MathSciNet  MATH  Google Scholar 

  43. Craik, A.D.D., Wave Interactions and Fluid Flows, Cambridge University Press, London. 1985.

    MATH  Google Scholar 

  44. Bretherton, F.P., Wave action and energy, Q.J.R. Meteorol, Soc. 92, 1966, 466–471.

    Article  Google Scholar 

  45. Booker, J.R. and Bretherton, The critical layer for internal gravity waves in a shear flow, F.P., J. Fluid Mech. 27, 1967, 513–539.

    Article  MATH  Google Scholar 

  46. Eltayeb, I.A. and McKenzie, Critical-layer behavior and wave amplification of a gravity wave incident upon a shear layer, J.F., J. Fluid Mech. 72, 1975, 661–671.

    Article  MATH  Google Scholar 

  47. Van Duin, C.A. and Kelder, H., Reflection properties of internal gravity waves, J. Fluid Mech. 120, 1982, 505–521.

    Article  MATH  Google Scholar 

  48. Barston, E.M., Electrostatic oscillations in inhomogeneous cold plasmas, Ann. Phys. N.Y. 29, 1964, 282–303

    Article  MathSciNet  Google Scholar 

  49. Sedlacek, Z., Electrostatic normal modes, J. Plasma Phys. 6, 1971, 187

    Article  Google Scholar 

  50. Sedlacek, Z., Cesk. Cas. Fyz. B. 23, 1973, 892–901.

    MathSciNet  Google Scholar 

  51. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Pergamon Press, Oxford. 1959

    Google Scholar 

  52. Lighthill, M.J.. Waves in Fluids, Cambridge University Press, London, 1978.

    MATH  Google Scholar 

  53. Whitham, G.B., Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Choudhury, S.R. (2001). Superasymptotic Perturbation Analysis of the Kelvin-Helmholtz Instability of Supersonic Shear Layers. In: Vajravelu, K. (eds) Differential Equations and Nonlinear Mechanics. Mathematics and Its Applications, vol 528. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0277-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0277-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6867-0

  • Online ISBN: 978-1-4613-0277-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics