Skip to main content

Variational Principles for Self-Adjoint Elliptic Eigenproblems

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 50))

Abstract

This paper describes some families of unconstrained variational principles for finding eigenvalues and eigenfunctions of symmetric closed linear operators on a Hilbert space. The functionals involved are smooth, with well-defined second derivatives and Morse-type indices associated with nondegenerate critical points. This leads to an analog of the Courant-Fischer-Weyl minimax theory, where an analysis of the second derivative at a critical point leads to the determination of which eigenvalue of the operator is associated with this eigenfunction. An extension to weighted eigenproblems is also described. The case of linear second order elliptic operators on a nice bounded set and subject to zero Dirichlet conditions is treated in some detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auchmuty, G. (1986). Dual variational principles for eigenvalue problems. Proc. Symp. Pure Mathematics, A.M.S., 45:55–72.

    MathSciNet  Google Scholar 

  • Auchmuty, G. (1989a). Unconstrained variational principles for eigenvalues of real, symmetric matrices. SIAM J. Math Anal, 20:1186–1207.

    Article  MathSciNet  MATH  Google Scholar 

  • Auchmuty, G. (1989b). Variational principles for eigenvalues of compact operators. SIAM J. Math Anal, 20:1321–1335.

    Article  MathSciNet  MATH  Google Scholar 

  • Bandle, C. (1980). Isoperimetric inequlaities and applications. Pitman, London.

    Google Scholar 

  • Belgacem, F. (1997). Elliptic boundary value problems with indefinite weights: variational formulations of the principal eigenvalue and applications. Pitman Research Notes in Mathematics Vol. 368. Longman, Harlow.

    Google Scholar 

  • Brezis, H. (1983). Analyse Functionelle. Masson, Paris.

    Google Scholar 

  • Chatelin, F. (1983). Spectral Approximation of Linear Operators. Academic Press, New York.

    MATH  Google Scholar 

  • Cosner, C. (1990). Eigenvalue problems with indefinite weights and reaction-diffusion models in population dynamics. In Brown and Lacey, editors, Reaction-Diffusion Equations. Oxford U. Press.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1958). Methods of Mathematical Physics, Volume 1. Interscience, New York.

    Google Scholar 

  • Gould, S. (1966). Variational Methods for Eigenvalue Problems, 2nd edition. University of Toronto Press, Toronto.

    MATH  Google Scholar 

  • Hess, P. and Kato, T. (1980). On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm P.D.E., 5:999–1030.

    Article  MathSciNet  MATH  Google Scholar 

  • Hestenes, M. (1951). Applications of the theory of quadratic forms in hilbert space to the calculus of variations. Pacific J. Math, 1:525–581.

    MathSciNet  MATH  Google Scholar 

  • Mikhlin, S. (1964). Variational Methods in Mathematical Physics. Macmillan, New York.

    MATH  Google Scholar 

  • Weinberger, H. F. (1974). Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Zeidler, E. (1985). Nonlinear Functional Analysis and its Applications, III, Variational Methods and Optimization. Springer Verlag, New York.

    MATH  Google Scholar 

  • Zeidler, E. (1986). Nonlinear Functional Analysis and its Applications, I. Fixed Point Theorems. Springer Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Auchmuty, G. (2001). Variational Principles for Self-Adjoint Elliptic Eigenproblems. In: Gao, D.Y., Ogden, R.W., Stavroulakis, G.E. (eds) Nonsmooth/Nonconvex Mechanics. Nonconvex Optimization and Its Applications, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0275-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0275-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7973-7

  • Online ISBN: 978-1-4613-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics