Some Aspects of B-Harmonic Analysis

  • Vagif S. Guliev
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 8)


In this work we introduce and investigate the function spaces, integral operators, generated by the Bessel differential operators, Bessel shift operators and Bessel transformations. We investigate also the boundedness of anisotropic B-maximal functions M B and the anisotropic B-Riesz potentials R B α on the anisotropic B-Morrey spaces L p,λ,α γ , B- BMO spaces BMO γ,α . Note that, the isotropic Hardy-Littlewood-Bessel maximal functions (B-maximal functions), Morrey-Bessel (B-Morrey) and BMO-Bessel (B-BMO) spaces were introduced and studied in [1]. We study also the anisotropic Riesz-Bessel potential (B-potential) in the anisotropic Morrey-Bessel and the anisotropic BMO-Bessel spaces. We obtain a theorem analogous to the Sobolev theorem, for the anisotropic Riesz-Bessel potential in anisotropic Morrey-Bessel spaces (see [2]).


Integral Operator Maximal Function Homogeneous Type Bessel Potential Finite Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. S. Guliev, Sobolev theorems for B-Riesz potentials. // Dokl. RAN, 1998, v.358, no. 4, c.450–451. (In Russian)MathSciNetGoogle Scholar
  2. [2]
    V. S. Guliev, Some properties of the anisotropic Riesz-Bessel potential. // Analysis Mathematica, 2000, v. 26, no. 2, 20 pp.MathSciNetCrossRefGoogle Scholar
  3. [3]
    B. M. Levitan, Bessel function expansions in series and Fourier integrals. // Uspekhi Mat. Nauk 6 (1951), no. 2 (42), 102–143. (In Russian)Google Scholar
  4. [4]
    I. A. Kiprijanov, Singular elliptic boundary problems. // Physical and Mathematical Publishing Company Russian Academy of Sciences. Moscow, 1997, 208 pages. (In Russian)Google Scholar
  5. [5]
    R. Coifman, G. Weiss, Analys harmonique non-commutative sur certain espaces homogenes.// Lecture Notes in Mathematics, n. 242 (1968), Springer-Verlag, Berlin-New York-Heldeberg 1971.Google Scholar
  6. [6]
    A. D. Gadjiev, I. A. Aliev, On classes of operators of potential types, generated by a generalized shift. // Reports of enlarged Session of the Seminars of I.N.Vekua Inst. of Applied Mathematics, 3, No. 2, Tbilisi, 1988. (In Russian)Google Scholar
  7. [7]
    L. N. Ljahov, Reversion of the B-Riesz potentials.// Dokl. SSSR, 1991, v.321, no. 3, c.466–469. (In Russian)Google Scholar
  8. [8]
    D. D. Gasanov, V. S. Guliev, A. X. NarimanovCertain inequality for the anizotropic B-maximal functions and the anisotropic B-Riesz potentials.//Trydi inst. Math. and Mech. Nauk Azerb. Rep., 4 (1996), p. 18–24.Google Scholar
  9. [9]
    V. S. Guliev, Integral operators on function spaces on the homogeneous groups and on domains in Rn.// Doctor’s sci dissertation (phys.-math), Moscow, Mat. Inst. Steklov, 1994, p.1–329. (Russian)Google Scholar
  10. [10]
    V. S. Guliev, Integral operators, Function spaces and questions of approximation on the Heisenberg group.// Baku, “ELM”, 1996. p. 1–200.Google Scholar
  11. [11]
    V. S. Guliev, R. Ch. Mustafaev, Fractional integrals on spaces of homogeneous type.// Analysis Mathematica, 1998, v.24, c.181–200.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Vagif S. Guliev
    • 1
  1. 1.Faculty of Mechanics and MathematicsBaku State UniversityBakuAzerbaijan

Personalised recommendations