Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 72))

Abstract

Free material design deals with the question of finding the stiffest structure with respect to one or more given loads which can be made when both the distribution of material as the material itself can be freely varied. We present the single and multiple-load situation (understood in the worst-case sense). We further introduce a software tool MOPED for free material optimization of general two-dimensional bodies and present results of academic and real-world examples. Finally, we generalize the above approach to the case of uncertain loads in order to design an optimal robust material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Allaire, E. Bonentier, G. Francfort, and F. Jouve. Shape optimization by the homogenization method. Numerische Mathematik, 76: 27–68, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Allaire and R. Kohn. Optimal design for minimum weight ans compliance in plane stress using extremal microstructures. European J. on Mechanics (A/Solids) 12: 839–878, 1993.

    MathSciNet  MATH  Google Scholar 

  3. M. Beckers. Topology optimization using a dual method with discrete vriables. Structural Optimization, 17: 14–24, 1999.

    Article  MathSciNet  Google Scholar 

  4. A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design via semidefinite programming. The multi-load case with contact conditions. SIAM J. Optimization 9: 813–832, 1999.

    Article  MATH  Google Scholar 

  5. A. Ben-Tal and A. Nemirovski. Stable truss topology design via semidefinite programming. SIAM J. Optimization 7: 991–1016, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ben-Tal and A. Nemirovski. Robust convex programming. Mathematics of Operations Research 23: 769–805, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ben-Tal and M. Zibulevsky. Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optimization 7: 347–366, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.P. Bendsøe. Optimization of Structural Topology, Shape and Material. Springer-Verlag, Heidelberg, 1995.

    Google Scholar 

  9. M.P. Bendsøe, J.M. Guades, R.B. Haber, P. Pedersen, and J.E. Taylor. An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics 61: 930–937, 1994.

    Article  Google Scholar 

  10. M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comp. Meth. Appl. Mechs. Engrg., 71: 197–224, 1988.

    Article  Google Scholar 

  11. M. P. Bendsøe and O. Sigmund. Material interpolation schemes in topology optimization. Arch. Applied Mech., 69: 635–654, 1999.

    Article  Google Scholar 

  12. G. Brechtold and J. Klenner. The integrated design and manufacturing of composite structures for aircraft using an advanced tape laying technology. DLR-Jahrestagung, Bremen, 1992.

    Google Scholar 

  13. J. Cea. Lectures on Optimization. Springer-Verlag, Berlin, 1978.

    MATH  Google Scholar 

  14. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978.

    MATH  Google Scholar 

  15. I. Ekeland and R. Temam. Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  16. H. A. Eschenauer, G. Schuhmacher, and J. M. Krammer. Constructive design models for multidisciplinary optimization of fibre composite structures. In 4th Symposium on Multidisciplinary Analysis and Optimization,Cleveland, OH, USA, Sept. 21.-23. 1992. AIAA/USAF/NASA/OAI, AIAA.

    Google Scholar 

  17. R. B. Haber, M. P. Bendsøe, and C. Jog. A new approach to variable-topology shape design using a constraint on the perimeter. Structural Optimization, 11: 1–12, 1996.

    Article  Google Scholar 

  18. I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovisek. Solution of variational inequalities in mechanics. Springer-Verlag, New-York, 1988.

    Book  MATH  Google Scholar 

  19. F. Jarre, M. Koévara, and J. Zowe. Optimal truss design by interior point methods. SIAM J. Optimization 8: 1084–1107, 1998.

    Article  MATH  Google Scholar 

  20. M. Kočvara, M. Zibulevsky, and J. Zowe. Mechanical design problems with unilateral contact. M 2 AN Math. Modelling and Numer. Anal. 32: 255–282, 1998.

    MATH  Google Scholar 

  21. M. Kočvara and J. Zowe. How mathematics can help in design of mechanical structures. In: D. Griffiths and G. Watson, eds., Proc. of the 16th Biennial Conf. on Numerical Analysis, pp. 76–93, Longman, Harlow, 1996.

    Google Scholar 

  22. M. Kočvara, J. Zowe, and A. Nemirovski. Cascading—An Approach to Robust Material Optimization. Computers & Structures 76: 431–442, 2000.

    Article  Google Scholar 

  23. R. V. Kohn and G. Strang. Optimal design and relaxation of variational problems. Comm. Pure and Applied Mathematics, 39:1–25 (Part I), 139–182 (Part II) and 353–377 (Part III), 1986.

    Google Scholar 

  24. H. P. Mlejnek and R. Schirrmacher. An engineering approach to optimal material distribution and shape finding. Comp. Meth. Appl. Mechs. Engrg., 106: 1–26, 1993.

    Article  MATH  Google Scholar 

  25. J.-J. Moreau. Théorèmes “inf-sup”. C. R. Acad. Sc. Paris, t.258, Groupe 1, 2720–2722, 1964.

    MathSciNet  Google Scholar 

  26. J. Petersson. On stiffness maximization of variable thickness sheet with unilateral contact. Quart. Appl. Math., 54: 541–550, 1996.

    MathSciNet  MATH  Google Scholar 

  27. U. Ringertz. On finding the optimal distribution of material properties. Structural Optimization 5: 265–267, 1993.

    Article  Google Scholar 

  28. R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.

    MATH  Google Scholar 

  29. O. Sigmund. Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark, Lyngby, 1994.

    Google Scholar 

  30. M. Stingl. The penalty/barrier multiplier method for convex programming. Preprint 261, Inst. Appl. Math., Univ. of Erlangen, 2000.

    Google Scholar 

  31. R. Werner. Free material optimization. Mathematical analysis and numerical simulation. PhD thesis, Inst. Appl. Math., Univ. of Erlangen, 2001.

    Google Scholar 

  32. J. Zowe, M. Kočvara, and M.P. Bendsøe. Free material optimization via mathematical programming. Math. Programming, Series B 79: 445–466, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kočvara, M., Zowe, J. (2002). Free Material Optimization: An Overview. In: Siddiqi, A.H., Kočvara, M. (eds) Trends in Industrial and Applied Mathematics. Applied Optimization, vol 72. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0263-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0263-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7967-6

  • Online ISBN: 978-1-4613-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics