Skip to main content

Numerical Methods for Large-Scale Non-Convex Quadratic Programming

  • Chapter
Trends in Industrial and Applied Mathematics

Part of the book series: Applied Optimization ((APOP,volume 72))

Abstract

We consider numerical methods for finding (weak) second-order critical points for large-scale non-convex quadratic programming problems. We describe two new methods. The first is of the active-set variety. Although convergent from any starting point, it is intended primarily for the case where a good estimate of the optimal active set can be predicted. The second is an interior-point trust-region type, and has proved capable of solving problems involving up to half a million unknowns and constraints. The solution of a key equality constrained subproblem, common to both methods, is described. The results of comparative tests on a large set of convex and non-convex quadratic programming examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Altman and J. Gondzio. Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Logilab Technical Report 1998. 6, Department of Management Sciences, University of Geneva, Geneva, Switzerland, 1998.

    Google Scholar 

  2. E. D. Andersen and K. D. Andersen. Presolving in linear-programming. Mathematical Programming, Series A, 71 (2), 221–245, 1995.

    Article  MATH  Google Scholar 

  3. E. D. Andersen, J. Gondzio, C. Mészdros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, ed., ‘Interior Point Methods in Mathematical Programming’, pp. 189–252, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Google Scholar 

  4. A. Auslender. Penalty methods for computing points that satisfy second order necessary conditions. Mathematical Programming, 17 (2), 229–238, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bisschop and A. Meeraus. Matrix augmentation and partitioning in the updating of the basis inverse. Mathematical Programming, 13 (3), 241–254, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 4, 1–51, 1995.

    Article  MathSciNet  Google Scholar 

  7. I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software,21(1), 123–160,1995.

    Article  MATH  Google Scholar 

  8. J. M. Borwein. Necessary and sufficient conditions for quadratic minimality. Numerical Functional Analysis and Optimization, 5, 127–140, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. R. Bunch and L. C. Kaufman. Some stable methods for calculating inertia and solving symmetric linear equations. Mathematics of Computation, 31, 163–179, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 8 (4), 639–655, 1971.

    Article  MathSciNet  Google Scholar 

  11. R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89 (1), 149–185, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale nonlinear programming. SIAM Journal on Optimization, 9 (4), 877–900, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno. Higher-order predictor-corrector interior point methods with application to quadratic objectives. SIAM Journal on Optimization, 3 (4), 696–725, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Chabrillac and J.-P. Crouzeix. Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra and its Applications, 63, 283–292, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. F. Coleman. Linearly constrained optimization and projected preconditioned conjugate gradients. In J. Lewis, ed., ‘Proceedings of the Fifth SIAM Conference on Applied Linear Algebra’, pp. 118–122, SIAM, Philadelphia, USA, 1994.

    Google Scholar 

  16. T. F. Coleman and A. Verma. A preconditioned conjugate gradient approach to linear equality constrained minimization. Technical report, Department of Computer Sciences, Cornell University, Ithaca, New York, USA, July 1998.

    Google Scholar 

  17. A. R. Conn and N. I. M. Gould. On the location of directions of infinite descent for nonlinear programming algorithms. SIAM Journal on Numerical Analysis, 21 (6), 302–325, 1984.

    Article  MathSciNet  Google Scholar 

  18. A. R. Conn and J. W. Sinclair. Quadratic programming via a non-differentiable penalty function. Technical Report CORR 75/15, Faculty of Mathematics, University of Waterloo, 1975.

    Google Scholar 

  19. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadelphia, 2000a.

    Book  MATH  Google Scholar 

  20. A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87 (2), 215–249, 2000b.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. L. Contesse. Une caractérisation complète des minima locaux en programmation quadratique. Numerische Mathematik, 34 (3), 315–332, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9 (3), 302–325, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. The factorization of sparse symmetric indefinite matrices. IMA Journal of Numerical Analysis, 11, 181–204, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Neilsen. Direct solution of sets of linear equations whose matrix is sparse, symmetric and indefinite. Journal of the Institute of Mathematics and its Applications, 23, 235–250, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Fiacco and G. R. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, Chichester, England, 1968. Reprinted as Classics in Applied Mathematics 4, SIAM, Philadelphia, USA, 1990.

    Google Scholar 

  26. R. Fletcher. A general quadratic programming algorithm. Journal of the Institute of Mathematics and its Applications, 7, 76–91, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Fletcher. Factorizing symmetric indefinite matrices. Linear Algebra and its Applications, 14, 257–272, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Fletcher. Quadratic programming. In ‘Practical Methods of Optimization’, chapter 10, pp. 229–258. J. Wiley and Sons, Chichester, England, second edn, 1987a.

    Google Scholar 

  29. R. Fletcher. Recent developments in linear and quadratic programming. In A. Iserles and M. J. D. Powell, eds, ‘State of the Art in Numerical Analysis. Proceedings of the Joint IMA/SIAM Conference’, pp. 213–243. Oxford University Press, Oxford, England, 1987b.

    Google Scholar 

  30. R. E. Gill and W. Murray. Numerically stable methods for quadratic programming. Mathematical Programming, 14 (3), 349–372, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28, 505–535, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. E. Gill, W. Murray, and M. H. Wright. Quadratic programming. In ‘Practical Optimization’, chapter 5.3.2–5.4.1, pp. 177–184. Academic Press, London, England, 1981.

    Google Scholar 

  33. R. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method for sparse quadratic programming In M. G. Cox and S. J. Hammarling, eds, ‘Reliable Scientific Computation’, pp. 113–138, Oxford University Press, Oxford, England, 1990.

    Google Scholar 

  34. P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-controlling methods for general quadratic programming. SIAM Review, 33 (1), 1–36, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, second edn, 1989.

    MATH  Google Scholar 

  36. J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method. INFORMS Journal on Computing, 9 (1), 73–91, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme. Mathematical Programming, 83 (1), 125–143, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  38. N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic-programming problem. Mathematical Programming, 32 (1), 9099, 1985.

    Article  Google Scholar 

  39. N. I. M. Gould. An algorithm for large-scale quadratic programming. MA Journal of Numerical Analysis, 11 (3), 299–324, 1991.

    Article  MATH  Google Scholar 

  40. N. I. M. Gould and Ph. L. Toint. A note on the convergence of barrier algorithms to second-order necessary points. Mathematical Programming, 85 (2), 433–438, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  41. N. I. M. Gould and Ph. L. Toint. A quadratic programming bibliography. Numerical Analysis Group Internal Report 2000–1, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2000a.

    Google Scholar 

  42. N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. In M. J. D. Powell and S. Scholtes, eds, ‘System Modelling and Optimization, Methods, Theory and Applications’, pp. 149–178, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000b.

    Google Scholar 

  43. N. I. M. Gould and Ph. L. Toint. An iterative active-set method for large-scale quadratic programming. Technical Report in preparation, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001a.

    Google Scholar 

  44. N. I. M. Gould and Ph. L. Toint. Preprocessing for quadratic programming. Technical Report in preparation, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001b.

    Google Scholar 

  45. N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained quadratic problems arising in optimization. Technical Report RAL-TR-98–069, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1998.

    Google Scholar 

  46. N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem using the Lanczos method. SIAM Journal on Optimization, 9 (2), 504–525, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of primal-dual interior point algorithms for nonlinear programming. Technical Report RALTR-2000–014, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2000. To appear in SIAM Journal on Optimization.

    Google Scholar 

  48. S. P. Han. Solving quadratic programs with an exact penalty function. In O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds, ‘Nonlinear Programming, 4’, pp. 25–55, Academic Press, London and New York, 1981.

    Google Scholar 

  49. HSL. A collection of Fortran codes for large scale scientific computation, 2000.

    Google Scholar 

  50. C. Keller. Constraint preconditioning for indefinite linear systems. D. Phil. thesis, Oxford University, England, 2000.

    Google Scholar 

  51. C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite linear systems. SIAM Journal on Matrix Analysis and Applications, 21 (4), 1300–1317, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  52. O. L. Mangasarian. Locally unique solutions of quadratic programs, linear and non-linear complementarity problems. Mathematical Programming, 19 (2), 200–212, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  53. K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39 (2), 117–129, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Nocedal and S. J. Wright. Quadratic programming. In ‘Numerical Optimization’, Series in Operations Research, chapter 16, pp. 441–488. Springer Verlag, Heidelberg, Berlin, New York, 1999.

    Google Scholar 

  55. P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic programming is NP-hard. Operations Research Letters, 7 (1), 33–35, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  56. B. T. Polyak. The conjugate gradient method in extremal problems. U.S.S.R. Computational Mathematics and Mathematical Physics, 9, 94–112, 1969.

    Article  Google Scholar 

  57. D. C. Sorensen. Updating the symmetric indefinite factorization with applications in a modified Newton method. Technical Report ANL-77–49, Argonne National Laboratory, Illinois, USA, 1977.

    Google Scholar 

  58. T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis, 20 (3), 626–637, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  59. Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S. Duff, ed., ‘Sparse Matrices and Their Uses’, pp. 57–88, Academic Press, London, 1981.

    Google Scholar 

  60. R. J. Vanderbei. LOQO: an interior point code for quadratic programming. Technical Report SOR 94–15, Program in Statistics and Operations,Research, Princeton University, New Jersey, USA, 1994.

    Google Scholar 

  61. R. J. Vanderbei and T. J. Carpenter. Symmetrical indefinite systems for interior point methods. Mathematical Programming, 58 (1), 1–32, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  62. S. A. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36 (2), 7377, 1990.

    Article  MathSciNet  Google Scholar 

  63. S. A. Vavasis. Convex quadratic programming. In ‘Nonlinear Optimization: Complexity Issues’, pp. 36–75, Oxford University Press, Oxford, England, 1991.

    Google Scholar 

  64. S. Wright and Y. Zhang. A superquadratic infeasible-interior-point method for linear complementarity problems. Mathematical Programming, Series A, 73 (3), 269–289, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  65. Y. Ye. Indefinite quadratic programming. In ‘Interior-Point Algorithm: Theory and Analysis’, chapter 9.4–9.5, pp. 310–331. J. Wiley and Sons, New York, USA, 1997.

    Google Scholar 

  66. E. A. Yildirim and S. J. Wright. Warm-start strategies in interior-point methods for linear programming. Technical Report MCS-P799–0300, Argonne National Laboratory, Illinois, USA, 2000.

    Google Scholar 

  67. Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM Journal on Optimization,4(1), 208–227,1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gould, N.I.M., Toint, P.L. (2002). Numerical Methods for Large-Scale Non-Convex Quadratic Programming. In: Siddiqi, A.H., Kočvara, M. (eds) Trends in Industrial and Applied Mathematics. Applied Optimization, vol 72. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0263-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0263-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7967-6

  • Online ISBN: 978-1-4613-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics