Skip to main content

A Derivative-Free Algorithm for Sparse Unconstrained Optimization Problems

  • Chapter
Trends in Industrial and Applied Mathematics

Part of the book series: Applied Optimization ((APOP,volume 72))

Abstract

We consider the problem of minimizing a function whose derivatives are not available. This paper first presents an algorithm for solving problems of this class using interpolation polynomials and trust-region techniques. We then show how both the data structure and the procedure allowing to build the interpolating polynomials may be adapted in a suitable way to consider problems for which the Hessian matrix is known to be sparse with a general sparsity pattern. The favourable behaviour of the resulting algorithm is confirmed with numerical experiments illustrating the advantages of the method in terms of storage, speed and function evaluations, the latter criterion being particularly important in the framework of derivative-free optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. M. Alexandrov, J.E. Dennis, R. M. Lewis, and V. Torczon. A trust region framework for managing the use of approximation models. Structural Optimization, 15 (1): 16ā€“23, 1998

    ArticleĀ  Google ScholarĀ 

  2. C. Audet, A. Booker, J. E. Dennis, P. Frank, and D. W. Moore. A surrogatemodel-based method for constrained optimization. AIAA paper 2000ā€“4891, AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 2000.

    Google ScholarĀ 

  3. G. E. P. Box. Evolutionary operation: a method for increasing industrial productivity. Applied statistics, 6: 81ā€“101, 1957.

    ArticleĀ  Google ScholarĀ 

  4. R. P. Brent. Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1973.

    MATHĀ  Google ScholarĀ 

  5. A. G. Buckley. A derivative-free algorithm for parallel and sequential optimization. presentation at the NATO ASI on Algorithms for Continuous Optimization, Il Ciocco, 1994.

    Google ScholarĀ 

  6. F. M. Callier and Ph. L. Toint. Recent results on the accelerating property of an algorithm for function minimization without calculating derivatives. In A. Prekopa, editor, Survey of Mathematical Programming, pages 369ā€“376. Publishing House of the Hungarian Academy of Sciences, 1977.

    Google ScholarĀ 

  7. I. G. Campey and D. G. Nickols. Simplex minimization. Program specification, Imperial Chemical Industries Ltd, UK, 1961.

    Google ScholarĀ 

  8. B. Colson and Ph. L. Toint. Exploiting band structure in unconstrained optimization without derivatives Technical Report TR01/03, Department of Mathematics, University of Namur, Namur, Belgium, 2001.

    Google ScholarĀ 

  9. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 0l in MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000.

    BookĀ  MATHĀ  Google ScholarĀ 

  10. A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free methods for unconstrained optimization. In A. Iserles and M. Buhmann, editors, Approximation Theory and Optimization: Tributes to M. J. D. Powell, pages 83ā€“108, Cambridge, England, 1997. Cambridge University Press.

    Google ScholarĀ 

  11. A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained nonlinear optimization without derivatives. Mathematical Programming, Series B, 79 (3): 397ā€“414, 1997.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algorithm in practice. Technical Report TR98/11, Department of Mathematics, University of Namur, Namur, Belgium, 1998.

    Google ScholarĀ 

  13. A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for unconstrained derivative free optimization. In G. Di Pillo and F. Gianessi, editors, Nonlinear Optimization and Applications,pages 27ā€“47, New York, 1996. Plenum Publishing. Also available as Report 95/6, Dept of Mathematics, FUNDP, Namur, Belgium.

    Google ScholarĀ 

  14. J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983. Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.

    Google ScholarĀ 

  15. J. E. Dennis and V. Torczon. Direct search methods on parallel machines. SIAM Journal on Optimization, 1 (4): 448ā€“474, 1991.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. J. E. Dennis and V. Torczon. Managing approximation models in optimization. In N. M. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design Optimization, pages 330ā€“347, Philadelphia, USA, 1997. SIAM.

    Google ScholarĀ 

  17. L. C. W. Dixon. Nonlinear Optimisation. The English Universities Press Ltd, London, 1972.

    MATHĀ  Google ScholarĀ 

  18. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1981.

    MATHĀ  Google ScholarĀ 

  19. R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. Journal of the ACM, 8: 212ā€“229, 1961.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  20. S. Lucidi and M. Sciandrone. A coordinate descent method without derivatives. Technical Report 10ā€“95 (in preparation), University of Rome ā€œLa Sapienzaā€, Rome, 1995.

    Google ScholarĀ 

  21. M. Marazzi and J. Nocedal. Wedge trust region methods for derivative free optimization. Technical Report OTC 2000/10, Optimization Technology Center, Argonnne National Laboratory, Argonne, Illinois, USA, 2000.

    Google ScholarĀ 

  22. J. A. Neider and R. Mead. A simplex method for function minimization. Computer Journal, 7: 308ā€“313, 1965.

    Google ScholarĀ 

  23. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, Heidelberg, Berlin, New York, 1999.

    BookĀ  MATHĀ  Google ScholarĀ 

  24. M. J. D. Powell. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal, 17: 155ā€“162, 1964.

    ArticleĀ  Google ScholarĀ 

  25. M. J. D. Powell. A method for minimizing a sum of squares of nonlinear functions without calculating derivatives. Computer Journal, 7: 303ā€“307, 1965.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. M. J. D. Powell. A Fortran subroutine for unconstrained minimization requiring first derivatives of the objective function. Technical Report R-6469, AERE Harwell Laboratory, Harwell, Oxfordshire, England, 1970.

    Google ScholarĀ 

  27. M. J. D. Powell. A new algorithm for unconstrained optimization. In J. B. Rosen, O. L. Mangasarian, and K. Ritter, editors, Nonlinear Programming, London, 1970. Academic Press.

    Google ScholarĀ 

  28. M. J. D. Powell. A direct search optimization method that models the objective and constraint functions by linear interpolation. In S. Gomez and J. P. Hennart, editors, Advances in Optimization and Numerical Analysis, Proceedings of the Sixth Workshop on Optimization and Numerical Analysis Oaxaca, Mexico,volume 275, pages 51ā€“67, Dordrecht, The Netherlands, 1994. Kluwer Academic Publishers.

    Google ScholarĀ 

  29. M. J. D. Powell. Trust region methods that employ quadratic interpolation to the objective function. Presentation at the 5th SIAM Conference on Optimization, Victoria, 1996.

    Google ScholarĀ 

  30. M. J. D. Powell. On the Lagrange functions of quadratic models defined by interpolation. Technical Report NA10, Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, England, 2000.

    Google ScholarĀ 

  31. M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic interpolation. Technical Report NA14, Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, England, 2000.

    Google ScholarĀ 

  32. Th. Sauer and Yuan Xu. On multivariate Lagrange interpolation. Mathematics of Computation, 64: 1147ā€“1170, 1995.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  33. W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs in optimization and evolutionary operation. Technometrics, 4, 1962.

    Google ScholarĀ 

  34. G. W. Stewart. A modification of Davidonā€™s minimization method to accept difference approximations of derivatives. Journal of the ACM, 14, 1967.

    Google ScholarĀ 

  35. V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7 (1): 1ā€“25, 1997.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  36. D. Winfield. Function and functional optimization by interpolation in data tables. PhD thesis, Harvard University, Cambridge, USA, 1969.

    Google ScholarĀ 

  37. D. Winfield. Function minimization by interpolation in a data table. Journal of the Institute of Mathematics and its Applications, 12: 339ā€“347, 1973.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  38. M. H. Wright. Direct search methods: once scorned, now respectable. In D. F. Griffiths and G. A. Watson, editors, Proceedings of the 1995 Dundee Biennal Conference in Numerical Analysis, Reading, Massachusetts, USA, 1996. Addison-Wesley Publishing Company.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Colson, B., Toint, P.L. (2002). A Derivative-Free Algorithm for Sparse Unconstrained Optimization Problems. In: Siddiqi, A.H., Kočvara, M. (eds) Trends in Industrial and Applied Mathematics. Applied Optimization, vol 72. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0263-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0263-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7967-6

  • Online ISBN: 978-1-4613-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics