Skip to main content

Sampling and Quasi-Sampling in Rotation Invariant Paley-Wiener Spaces

  • Chapter
Trends in Industrial and Applied Mathematics

Part of the book series: Applied Optimization ((APOP,volume 72))

  • 418 Accesses

Abstract

The rotation-invariant Paley-Wiener space PW B with \(B = \overline {K_r (0)} {\text{ }} \subset {\text{ }}\mathbb{R}^n \) is decomposed into a direct orthogonal sum of rotation-invariant subspaces H k (B), k ∈ ℕ0. An orthonormal basis \(B_k : = \left\{ {v \in \mathbb{N},j = 1,...,a_k } \right\}\) for each of these subspaces, and hence for PWB B , is constructed. The associated expansion of fPW B is given by

$$f(x) = \mathop \sum \limits_{k = 0}^\infty \mathop \sum \limits_{v = 1}^\infty \mathop \sum \limits_{j = 1}^{a_k } c_{k,v} \left\{ {\int {_{s^{n - 1} } f(r_{k,v} u} )\psi _{v,j}^{(k)} (r_{k,v} u)d\sigma _{n - 1} (u)} \right\}\psi _{v,j}^{(k)} (x),$$

where S n-1 is the unit sphere in ℝn. Here the numbers r k,v > 0 and c k,v ∈ ℝ are independent of f. For such an expansion, which could be called ?quasi-sampling expansion? only information of f on the discrete set of spheres r k,v S n-1 is needed. For n = 1 this is essentially Shannon’s sampling theorem.

By means of the above expansion we derive sampling theorems for the subspaces

$$\mathop \oplus \limits_{k \in J} H_k (B) \subset PW_B {\text{ }}(J \subset \mathbb{N}_0 ,\left| J \right| < \infty )$$

of the form \( f\left( x \right) = \mathop \sum \limits_{k \in J} \mathop \sum \limits_{v = 1}^\infty R_v^{\left( k \right)}\left( {\left| x \right|} \right)\mathop \sum \limits_{\mu = 1}^N f\left( {{r_{k,v}}t_\mu ^{k,v}} \right)Y_\mu ^{k,v}\left( {\frac{x}{{\left| x \right|}}} \right) \) with \( t_\mu ^{\left( {k,v} \right)}{\text{ }} \in {S^{n - 1}} \), radial functions \( R_v^{\left( k \right)}:\left( {0,\infty } \right) \to \mathbb{C} \) and spherical function Y (k,v)μ : S n-1 → ℂ. These expansions show the spherical symmetry of the inderlying spaces. For J = {0} one obtains a sampling theorem for the space H0(B) of radial Paley-Wiener functions, which can also be deduces from Kramer’s lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Achieser, Vorlesungen über Approximationstheorie, Akademie-Verlag, Berlin, 1967.

    Google Scholar 

  2. P.L. Butzer, J.R. Higgins, and R.L. Stens, Sampling theory of signal analysis, In: Development of Mathematics 1950–2000 ( J.-P. Pier, ed.), Birkhäuser Verlag, Basel, 2000, pp. 193–234.

    Google Scholar 

  3. P.L. Butzer, W. Splettstößer, and R.L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), 1–70.

    MATH  Google Scholar 

  4. G.H. Hardy, Notes on special systems of orthogonal functions. IV. The orthogonal functions of Whittaker’s cardinal series, Proc. Cambridge Philos. Soc. 37 (1941), 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform, J. London Math. Soc. (2) 5 (1972), 707–714.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford Science Publications, Clarendon Press, Oxford, 1996.

    MATH  Google Scholar 

  7. H. Meschkowski, Hilbertsche Räume mit Kernfunktion, Springer-Verlag, Berlin, 1962.

    MATH  Google Scholar 

  8. M. Reimer, Constructive Theory of Multivariate Functions: With an Application to Tomography, Bibliographisches Institut, Mannheim, 1990.

    MATH  Google Scholar 

  9. W. Schempp and B. Dreseler, Einführung in die harmonische Analyse, Teubner, Stuttgart, 1980.

    MATH  Google Scholar 

  10. E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, N.J., 1971.

    MATH  Google Scholar 

  11. A. Zayed, Handbook of Function and Generalized Function Transformations, CRC Press, Boca Raton, FL, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ohligs, B., Stens, R.L. (2002). Sampling and Quasi-Sampling in Rotation Invariant Paley-Wiener Spaces. In: Siddiqi, A.H., Kočvara, M. (eds) Trends in Industrial and Applied Mathematics. Applied Optimization, vol 72. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0263-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0263-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7967-6

  • Online ISBN: 978-1-4613-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics