Skip to main content

Numerical Methods for Schrödinger-Type Problems

  • Chapter
Trends in Industrial and Applied Mathematics

Part of the book series: Applied Optimization ((APOP,volume 72))

Abstract

Several physical phenomena are modeled by initial-boundary value problems which can be formulated as Schrödinger-type systems of partial differential equations. In this paper, two classes of problems of this kind, Schrödinger equations, which arise in various areas of physics, and certain vibration problems from civil and mechanical engineering, are considered. A survey of numerical methods for solving linear and nonlinear problems in one and several space variables is presented, with special attention being devoted to the parabolic wave equation, the cubic Schrödinger equation, and to fourth order parabolic equations arising in vibrating beam and plate problems. Recently developed finite element methods for solving Schrödinger-type systems are also outlined.

This work was supported in part by national Science Foundation grant DMS-9805827

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Ablowitz and J. F. Ladik. A nonlinear difference scheme and inverse scattering. Stud. Appl. Math, 55: 213–229, 1976.

    MathSciNet  Google Scholar 

  2. G. Akrivis. Finite difference methods for the wide—angle “parabolic” equation. SIAM J. Numer. Anal., 36: 317–329, 1999.

    Article  MathSciNet  Google Scholar 

  3. G. D. Akrivis. Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal., 13: 115–124, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. D. Akrivis and V. A. Dougalis. Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain. Bull. Soc. Math. Greèce(N.S.), 31: 19–28, 1990.

    MathSciNet  MATH  Google Scholar 

  5. G. D. Akrivis and V. A. Dougalis. Finite difference discretizations of some initial and boundary value problems with interface. Math. Comp., 56: 505–522, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. D. Akrivis and V. A. Dougalis. On a class of conservative highly accurate Galerkin methods for the Schrödinger equation. M2ANMath. Model. Numer. Anal., 25: 643–670, 1991

    MathSciNet  MATH  Google Scholar 

  7. G. D. Akrivis and V. A. Dougalis. On a conservative finite difference method for the third order, wide—angle parabolic equation, pages 209–220. Computational Acoustics: Acoustic propagation 2, D. Lee, R. Vichnevetsky and A. R. Robinson, eds. North-Holland, Amsterdam, 1993.

    Google Scholar 

  8. G. D. Akrivis, V. A. Dougalis, and N. A. Kampanis. Error estimates for finite element methods for a wide—angle parabolic equation. Appl. Numer. Math., 16: 81–100, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. D. Akrivis, V. A. Dougalis, and N. A. Kampanis. On Galerkin methods for the wide—angle parabolic equation. J. Comput. Acoustics, 2: 99–112, 1994.

    Article  Google Scholar 

  10. G. D. Akrivis, V. A. Dougalis, and O. A. Karakashian. On fully discrete Galerkin methods of second—order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math., 59: 31–53, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. D. Akrivis, V. A. Dougalis, and G. E. Zouraris. Error estimate for finite difference methods for a wide-angle “parabolic” equation. SIAM J. Numer. Anal., 33: 2488–2509, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. D. Akrivis, V. A. Dougalis, and G. E. Zouraris. Finite difference schemes for the “parabolic” equation in a variable depth environment with a rigid bottom boundary condition. SIAM J. Numer. Anal., 39: 539–565, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Albrecht. Zum Differenzenverfahren bei parabolischen Differentialgleichungen. Z. Angew. Math. Mech., 37: 202–212, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L. Kraut, and M. Paprzycki. Almost block diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Linear Algebra Appl., 7: 275–317, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Andrade and S. McKee. High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients. J. Comput. Appl. Math., 3: 11–14, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. A. Arigu, E. H. Twizell, and A. B. Gumel. Parallel algorithms for fourth—order parabolic equations. Parallel Algorithms and Applications, 6: 273–286, 1995.

    MATH  Google Scholar 

  17. A. Askar and A. S. Cakmak. Explicit integration method for the time—dependent Schrodinger equation for collision problems. J. Chem. Phys., 68: 2794–2798, 1978.

    Article  MathSciNet  Google Scholar 

  18. J. M. Ball. Stability theory for an extensible beam. J. Diff.Eq., 14: 399–418, 1973.

    Article  MATH  Google Scholar 

  19. D. E. Beskos and K. L. Leung. Dynamic response of plate systems by combining finite difference, finite elements and Laplace transform. Comput. & Structures, 19: 763–775, 1984.

    Article  MATH  Google Scholar 

  20. C. de Boor. The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems using Cubic Splines. PhD thesis, University of Michigan, Ann Arbor, Michigan, 1966.

    Google Scholar 

  21. J. H. Bramble, R. E. Ewing, and G. Li. Alternating direction multistep methods for parabolic problems — iterative stabilization. SIAM J. Numer. Anal., 25: 904–919, 1989.

    Article  MathSciNet  Google Scholar 

  22. C. H. Bruneau, L. Di Menza, and T. Lehner. Numerical resolution of some nonlinear Schrödinger—like equations in plasma. Numer. Methods Partial Differential Equations, 15: 672–696, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Cerjan and K. C. Kulander. Efficient time propagation for finite—difference representations of the time-dependent Schrödinger equation. Comput. Phys. Comm., 63: 529–537, 1991.

    Article  MATH  Google Scholar 

  24. T. F. Chan and T. Kerkhoven. Fourier methods with extended stability intervals for the Korteweg—de Vries equation. SIAM J. Numer. Anal., 22: 441–454, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. F. Chan, D. Lee, and L. Shen. Stable explicit schemes for equations of the Schrödinger type. SIAM J. Numer. Anal., 23: 274–281, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. F. Chan and L. Shen. Stability analysis of difference schemes for variable coefficient Schrödinger type equations. SIAM J. Numer. Anal., 24: 336–349, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. F. Chan, L. Shen, and D. Lee. Difference schemes for the parabolic wave equation in ocean acoustics. Comput. Math. Appl., 11: 474–754, 1985.

    Google Scholar 

  28. T. F. Chan, L. Shen, and D. Lee. A stable explicit scheme for the ocean acoustic wave equation. Comput. Math. Appl.,11:929–936, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  29. Q. Chang, E. Jia, and W. Sun. Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys., 148: 397–415, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. Q. Chang and G. Wang. Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equation. J. Comput. Phys., 88: 362–380, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. K. Chattaraj, S. Rao Koneru, and B. M. Deb. Stability analysis of finite difference schemes for quantum mechanical equations of motion. J. Comput. Phys., 72: 504–512, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. M. Choo and S. K. Chung. L2—error estimate for the strongly damped extensible beam equations. Appl. Math. Lett., 11: 101–107, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. M. Choo and S. K. Chung. Finite difference approximate solutions for the strongly damped extensible beam equations. Appl. Math. Comput., 112: 11–32, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. M. Choo and S. K. Chung. Finite element Galerkin solutions for the nonplanar oscillatory beam equations. Appl. Math. Comput., 114: 279–301, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Christie, D. F. Griffiths, A. R. Mitchell, and J. M. Sanz-Serna. Product approximation for non—linear problems in the finite element method. IMA J. Numer. Anal., 1: 253–266, 1981

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Ciegis and O. Stikoniené. Explicit second—order accurate schemes for the nonlinear Schrödinger equations. Lithuanian Math. J., 39: 20–32, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Cloot, B. M. Herbst, and J. A. C. Weideman. A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys., 86: 127–146, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Collatz. Zur Stabilität des Differenzenverfahrens bei der Stabschwingungsgleichung. Z. Angew. Math. Mech., 31: 392–393, 1951.

    Article  MathSciNet  Google Scholar 

  39. L. Collatz. The Numerical Treatment of Differential Equations. Third Edition, Springer-Verlag, New York, 1966.

    Google Scholar 

  40. L. Collatz. Hermitian methods for initial value problems in partial differential equations, pages 41–61. Topics in Numerical Analysis, J. J. H. Miller, ed. Academic Press, New York, 1973.

    Google Scholar 

  41. M. D. Collins. The time—domain solution of the wide angle parabolic equation including the effects of sediment dispersion. J. Acoust. Soc. Amer., 84: 2114–2125, 1988.

    Article  Google Scholar 

  42. M. D. Collins. Applications and time—domain solution of higher order parabolic equations in underwater acoustics. J. Acoust. Soc. Amer., 86: 1097–1102, 1989.

    Article  Google Scholar 

  43. S. D. Conte. Numerical solution of vibration problems in two space variables. Pacific. J. Math., 7: 1533–1544, 1957.

    MathSciNet  Google Scholar 

  44. S. D. Conte. A stable implicit finite difference approximation to a fourth order parabolic equation. J. Assoc. Comp. Mach., 4: 18–23, 1957.

    MathSciNet  Google Scholar 

  45. S. D. Conte and W. C. Royster. Convergence of finite difference solutions to a solution of the equation of a vibrating rod. Proc. Amer. Math. Soc., 7: 742–749, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  46. S. H. Crandall. Numerical treatment of a fourth order parabolic partial differential equation. J. Assoc. Comp. Math., 1: 111–118, 1954.

    MathSciNet  Google Scholar 

  47. S. H. Crandall. Optimum recurrence formulas for a fourth order parabolic partial differential equation. J. Assoc. Comp. Math., 4: 467–471, 1957.

    MathSciNet  Google Scholar 

  48. W. Dai. Absolute stable explicit and semi—explicit schemes for Schrödinger equations. Math. Numer. Sinica., 11: 128–131, 1989.

    MathSciNet  MATH  Google Scholar 

  49. W. Dai. An unconditionally stable three—level explicit difference scheme for the Schrödinger equation with a variable coefficient. SIAM J. Numer. Anal., 29: 174–181, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Dai and R. Nassar. A finite difference scheme for the generalized nonlinear Schrödinger equation with variable coefficients. J. Comput. Math., 18: 123–132, 2000.

    MathSciNet  MATH  Google Scholar 

  51. A. Danaee and D. J. Evans. Hopscotch procedures for a fourth—order parabolic partial differential equation. Math. Comput. Simulation, 24: 326–329, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Delfour, M. Fortin, and G. Payre. Finite—difference solutions of a non—linear Schrödinger equation. J. Comput. Phys., 44: 277–288, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. E. Dendy Jr. An alternating direction method for Schrödinger’s equation. SIAM J. Numer. Anal., 14: 1028–1032, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. C. Diaz, G. Fairweather, and P. Keast. Algorithm 603: COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems by modified row and column elimination. ACM Trans. Math. Software, 9: 376–380, 1983.

    Article  MathSciNet  Google Scholar 

  55. J. C. Diaz, G. Fairweather, and P. Keast. FORTRAN packages for solving almost block diagonal linear systems by modified row and column elimination. ACM Trans. Math. Software, 9: 358–375, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  56. W. Dörfler. A time— and space—adaptive algorithm for the linear time—dependent Schrödinger equation. Numer. Math., 73: 419–448, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Douglas, Jr. The solution of the diffusion equation by a high order correct difference equation. J. Math. Phys., 35: 145–151, 1956.

    MATH  Google Scholar 

  58. J. Douglas, Jr. and T. Dupont. Alternating direction Galerkin methods on rectangles, pages 133–214. Numerical Solution of Partial Differential Equations — II, B. Hubbard, ed. Academic Press, New York, 1971.

    Google Scholar 

  59. J. Douglas, Jr. and H. H. Rachford Jr. On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc., 82: 421–439, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. J. Evans. A stable explicit method for the finite—difference solution of a fourth—order parabolic partial differential equation. Comput. J., 8: 280–287, 1965.

    Google Scholar 

  61. G. Fairweather. Galerkin methods for vibration problems in two space variables. SIAM J. Numer. Anal., 9: 702–714, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Fairweather. Galerkin methods for vibration problems. SIAM Rev., 15: 418, 1973.

    Google Scholar 

  63. G. Fairweather and A. R. Gourlay. Some stable difference approximations to a fourth—order parabolic partial differential equation. Math. Comp., 21: 1–11, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  64. G. Fairweather and R. D. Saylor. The reformulation and numerical solution of certain nonclassical initial—boundary value problems. SIAM J. Sci. Stat. Comput., 12: 127–144, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  65. Z. Fei, V. M. Pérez-Garcia, and L. Vasquez. Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput., 71: 165–177, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  66. I. Galbraith, Y. S. Ching, and E. Abraham. Two—dimensional time—dependent quantum—mechanical scattering event. Am. J. Phys, 52: 60–68, 1984.

    Article  Google Scholar 

  67. L. R. T. Gardner, G. A. Gardner, S. I. Zaki, and Z. El Sharawi. B—spline finite element studies of the non—linear Schrödinger equation. Comput. Methods Appl. Mech. Engrg., 108: 303–318, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  68. L. R. T. Gardner, G. A. Gardner, S. I. Zaki, and Z. El Sharawi. A leapfrog algorithm and stability studies for the non—linear Schrödinger equation. Arab. J. Sci. Eng., 18: 23–32, 1993.

    MATH  Google Scholar 

  69. T. Geveci and I. Christie. The convergence of a Galerkin approximation scheme for an extensible beam. M2ANMath. Model. Numer. Anal., 23: 597–613, 1989.

    MathSciNet  MATH  Google Scholar 

  70. A. R. Gourlay. Hopscotch: a fast second—order partial differential equation solver. J. Inst. Math. Appl., 6: 375–390, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. de G. Gribble. Extending the finite difference treatment of interfaces when using the parabolic wave equation. J. Acoust. Soc. Amer., 76: 217–221, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  72. R. M. Grice and R. J. Pinnington. A method for the vibration analysis of built—up structures, Part I: Introduction and analytical analysis of the plate—stiffened beam. J. Sound Vibration, 230: 825–849, 2000.

    Article  Google Scholar 

  73. R. M. Grice and R. J. Pinnington. A method for the vibration analysis of built—up structures, Part H: Analysis of the plate—stiffened beam using a combination of finite element analysis and analytical impedances. J. Sound Vibration, 230: 851–875, 2000.

    Article  Google Scholar 

  74. D. F. Griffiths, A. R. Mitchell, and J. Ll. Morris. A numerical study of the nonlinear Schrödinger equation. Comput. Methods. Appl. Mech. Engrg., 45: 177–215, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Hadjidimos. A new explicit three—level scheme for the solution of the heat flow equation. BIT, 9: 315–323, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Hadjidimos. A note on the numerical solution of a fourth—order parabolic partial differential equation. Bull. Soc. Math. Greèce(N.S.), 19: 194–197, 1978.

    MathSciNet  MATH  Google Scholar 

  77. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential—Algebraic Problems. Springer—Verlag, New York, 1991.

    MATH  Google Scholar 

  78. B. M. Herbst, A. R. Mitchell, and J. A. C. Weideman. On the stability of the nonlinear Schrödinger equation. J. Comput. Phys, 60: 263–281, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  79. B. M. Herbst, J. Ll. Morris, and A. R. Mitchell. Numerical experience with the nonlinear Schrödinger equation. J. Comput. Phys., 60: 282–305, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Hino, T. Yoshimura, K. Konishi, and N. Ananthanarayana. A finite element method for prediction of the vibration of a bridge subjected to a moving vehicle load. J. Sound Vibration,96:45–53, 1984.

    Article  Google Scholar 

  81. D. Huang. Finite element solution of the parabolic wave equation. J. Acoust. Soc. Amer., 84: 1405–1413, 1988.

    Article  Google Scholar 

  82. B. lovanovich. Additive difference scheme for a non-stationary fourth-order equation in an arbitrary domain. Zh. Vychisl. Mat. Mat. Fiz., 17: 377–383, 1977.

    Google Scholar 

  83. M. S. Ismail and T. R. Taha. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulation, 56: 547–562, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  84. F. Ivanauskas and M. Radziunas. On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations. SIAM J. Numer.Anal., 36: 1466–1481, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  85. M. K. Jain, S. R. K. Iyengar, and A. G. Lone. Higher order difference formulas for a fourth order parabolic partial differential equation. Internat. J. Numer. Methods Engrg., 10: 1357–1367, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  86. O. Karakashian, G. D. Akrivis, and V. A. Dougalis. On optimal order estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 30: 377–400, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  87. O. Karakashian and C. Makridakis. A space—time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp., 67: 479–499, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  88. O. Karakashian and C. Makridakis. A space—time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal., 36: 1779–1807, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  89. A. Q. M. Khaliq. A predictor—corrector scheme for fourth order parabolic partial differential equations. Comput. Math. Appl., 17: 1563–1566, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  90. A. Q. M. Khaliq and E. H. Twizell. A family of second—order methods for variable coefficient fourth order parabolic partial differential equations. Intern. J. Computer Math., 23: 63–76, 1987.

    Article  MATH  Google Scholar 

  91. A. Q. M. Khaliq, E. H. Twizell, and A. Y. Al-Hawaj. The dynamic analysis of cantilever beams by the finite element method, pages 471–478. The Mathematics of Finite Elements and Applications VII, J. R. Whiteman, ed. Academic Press, New York, 1991.

    Google Scholar 

  92. D. Kosloff and R. Kosloff. A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys., 52: 35–53, 1983.

    Article  MATH  Google Scholar 

  93. H. O. Kreiss. Über implizite Differenzmethoden für partielle Differentialgleichungen. Numer. Math., 5: 24–47, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  94. D. Lee and S. T. McDaniel. Ocean acoustic propagation by finite difference methods. Comput. Math. Appl., 14: 305–423, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  95. D. Lee and M. H. Schultz. Numerical Ocean Acoustic Propagation in Three Dimensions. World Scientific, Singapore, 1995.

    Book  MATH  Google Scholar 

  96. H. Y. Lee. Fully discrete methods for the nonlinear Schrödinger equation. Computers Math. Applic., 28 (6): 9–24, 1994.

    Article  MATH  Google Scholar 

  97. M. Lees. Alternating direction and semi—explicit difference methods for parabolic partial differential equations. Numer. Math., 5: 398–412, 1961.

    Article  MathSciNet  Google Scholar 

  98. C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H. D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff. A comparison of different propagation schemes for the time dependent Schrödinger equation. J. Comput. Phys., 94: 59–80, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  99. B. Li. Discrete—Time Orthogonal Spline Collocation Methods for Schrödinger-Type Problems. PhD thesis, University of Kentucky, Lexington, Kentucky, 1998.

    Google Scholar 

  100. B. Li, G. Fairweather, and B. Bialecki. Discrete—time orthogonal spline collocation methods for Schrödinger equations in two space variables. SIAM J. Numer. Anal., 35: 453–477, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  101. B. Li, G. Fairweather, and B. Bialecki. Discrete—time orthogonal spline collocation methods for vibration problems. Tech. Rept., 00–05, Dept. of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, 2000.

    Google Scholar 

  102. B. Li, G. Fairweather, and B. Bialecki. A Crank—Nicolson orthogonal spline collocation method for vibration problems. Appl. Numer. Math., 33: 299–306, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  103. B. Li, G. Fairweather, and B. Bialecki. Discrete—time orthogonal spline collocation methods for vibration problems. SIAM J. Numer. Anal., to appear, 2001.

    Google Scholar 

  104. T. Lin and D. L. Russell. A superconvergent method for approximating the bending moment of elastic beams with hysteresis damping. Appl. Numer. Math., 38: 145–165, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  105. Z. M. Lou, B. Bialecki, and G. Fairweather. Orthogonal spline collocation methods for biharmonic problems. Numer. Math., 80: 267–303, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  106. M. Luskin. An alternating direction method for the deflection of a plate. Technical Report UMSI 85/2, University of Minnesota Supercomputer Institute, Minneapolis, Minnesota, 1985.

    Google Scholar 

  107. E. J. W. ter Maten. Splitting methods for fourth order parabolic partial differential equations. Computing, 37: 335–350, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  108. E. J. W. ter Maten and G. L. G. Sleijpen. A convergence analysis of hopscotch methods for fourth order parabolic equations. Numer. Math., 49: 275–290, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  109. E. A. McCullough Jr. and R. E. Wyatt. Dynamics of the collinear H + H2 reaction I. Probability density and flux. J. Chem. Phys., 54: 3578–3591, 1971.

    Article  Google Scholar 

  110. S. T. McDaniel. Applications of energy methods for finite—difference solutions of the parabolic wave equation. Computers Math. Applic., 11: 823–829, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  111. L. Meirovitch. Fundamentals of Vibrations. McGraw—Hill, New York, 2001.

    Google Scholar 

  112. R. E. Mickens. Novel explicit finite—difference schemes for time—dependent Schrödinger equations. Comput. Phys. Comm., 63: 203–208, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  113. A. R. Mitchell. An optimum implicit recurrence formula for the solution of the equation of the vibrating beam. Appl. Sci. Res, 14: 177–181, 1964.

    Article  Google Scholar 

  114. T. Miyoshi A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. (Math.), 9: 87–116, 1973.

    MathSciNet  MATH  Google Scholar 

  115. Z. Oniszczuk. Free transverse vibration of an elastically connected rectangular simply supported double-plate complex system. J. Sound Vibration, 236: 595–608, 2000.

    Article  Google Scholar 

  116. D. G. Orley and S. McKee. A note on hopscotch as applied to the bending beam equation. J. Inst. Math. Appl., 11: 335–338, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  117. D. Pathria and J. LI. Morris. Exact solutions for a generalized nonlinear Schrödinger equation. Phys. Scr., 39: 673–679, 1989.

    Article  Google Scholar 

  118. D. Pathria and J. Ll. Morris. Pseudo—spectral solution of nonlinear Schrödinger equations. J. Comput. Phys., 87: 108–125, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  119. D. Pathria and J. Ll. Morris. A variable degree spectral collocation algorithm for the solution of nonlinear evolutionary equations. Appl. Numee Math., 8: 243–256, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  120. G. Peggion and J. J. O’Brien. An explicit finite—difference scheme for solving the ocean acoustic parabolic wave equation. Comput. Math. Appl., 11: 937–942, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  121. L. S. Peranich. A finite difference scheme for solving a non—linear Schrödinger equation with a linear damping term. J. Comput. Phys., 68: 501–505, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  122. I. V. Puzynin, A. V. Selin, and S. I. Vinitsky. A high—order accuracy method for numerical solving of the time—dependent Schrödinger equation. Comput. Phys. Comm., 123: 1–6, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  123. A. Quarteroni. Mixed approximations of evolution problems. Comput. Methods Appl. Mech. Engrg., 24: 137–163, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  124. J. Rashidinia and T. Aziz. Spline solution of fourth—order parabolic partial differential equations. Internat. J. Appl. Sci. Comput., 5: 139–148, 1998.

    MathSciNet  Google Scholar 

  125. J. J. Rasmussen and K. Rypdal. Blow—up in nonlinear Schrödinger equations — I. A general review. Phys. Scr., 33: 481–497, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  126. L. F. Register, U. Ravaioli, and K. Hess. Numerical simulation of mesoscopic systems with open boundaries using the multidimensional time—dependent Schrödinger equation. J. Appl. Phys., 69: 7153–7158, 1991.

    Article  Google Scholar 

  127. L. F. Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam. Phil. Trans. Roy. Soc. A, 210: 307–357, 1910.

    Article  Google Scholar 

  128. R. D. Richtmyer. Difference Methods for Initial Value Problems. Interscience, New York, 1957.

    MATH  Google Scholar 

  129. R. D. Richtmyer and K. W. Morton. Difference Methods for Initial Value Problems. Second Edition. Interscience, New York, 1967.

    MATH  Google Scholar 

  130. J. S. Robertson, D. C. Arney, M. J. Jacobson, and W. L. Siegmann. An efficient enhancement of finite—difference implementations for solving parabolic equations. J. Acoust. Soc. Amer., 86: 252–260, 1989.

    Article  MathSciNet  Google Scholar 

  131. M. Robinson and G. Fairweather. On the use of the NAG routine D02NNF in the numerical solution of the cubic Schrödinger equation. Tech. Rept., CCS-89–4, Center for Computational Sciences, University of Kentucky, Lexington, Kentucky, 1989.

    Google Scholar 

  132. M. P. Robinson. Orthogonal spline collocation solution of nonlinear Schrödinger equations, pages 355–360. Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993 ), Proc. Sympos. Appl. Math. Vol. 48. Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  133. M. P. Robinson. The solution of nonlinear Schrödinger equations using orthogonal spline collocation. [Corrigendum: Comput. Math. Appl., 35 (1998), 151]. Comput. Math. Appl., 33: 39–57, 1997.

    MATH  Google Scholar 

  134. M. P. Robinson and G. Fairweather. Orthogonal cubic spline collocation solution of underwater acoustic wave propagation problems. J. Comput. Acoust., 1: 355–370, 1993.

    Article  MathSciNet  Google Scholar 

  135. M. P. Robinson and G. Fairweather. An orthogonal spline collocation method for the numerical solution of underwater acoustic wave propagation problems,pages 339–353 omputational Acoustics, Vol. 2, D. Lee, A. R. Robinson and R. Vichnevetsky, eds. North-Holland, Amsterdam, 1993.

    Google Scholar 

  136. M. P. Robinson and G. Fairweather. Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math., 68: 355–376, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  137. M. P. Robinson, G. Fairweather, and B. M. Herbst. On the numerical solution of the cubic Schrödinger equation in one space variable. J. Comput. Phys., 104: 277–284, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  138. D. L. Russell. On mathematical models for the elastic beam with frequency proportional damping, pages 125–169. Control and Estimation in Distributed Parameter Systems, H. T. Banks, ed. SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  139. F. Saied. Numerical techniques for the solution of the time—dependent Schrödinger equation and their parallel implementation. Tech. Rept., YALEUIDCS/RR-811, Yale University, 1990.

    Google Scholar 

  140. F. Saied, C.-T. Ho, S. L. Johnsson, and M. Schultz. Solving Schrödinger’s equation on the Intel iPSC by the alternating direction method, pages 627–638. Hypercube Multiprocessors 1987, M. T. Heath, ed. SIAM, Philadelphia, PA, 1987.

    Google Scholar 

  141. J. M. Sanz-Serna. Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp., 43: 21–27, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  142. J. M. Sanz-Serna and I. Christie. A simple adaptive technique for nonlinear wave problems. J. Comput. Phys., 52: 348–360, 1986.

    Article  MathSciNet  Google Scholar 

  143. J. M. Sanz-Serna and V. S. Manoranjan. A method for the integration in time of certain partial differential equations. J. Comput. Phys., 52: 273–289, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  144. J. M. Sanz-Serna and J. G. Verwer. Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal., 6: 25–42, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  145. V. K. Saul’yev. A new difference method for the numerical solution of fourth—order parabolic equations. Zh. Vychisl. Mat. Mat. Fiz., 26: 1831–1838, 1986.

    Google Scholar 

  146. V. K. Saul’yev. An explicit absolutely stable difference scheme for a fourth—order parabolic equation. Zh. Vychisl. Mat. Mat. Fiz., 27: 1890–1894, 1987.

    Google Scholar 

  147. M. H. Schultz, D. Lee, and K. R. Jackson. Application of the Yale sparse matrix package to solve the 3—dimensional parabolic equation. Recent Progress in the Development and Application of the Parabolic Equation, P. D. Scully—Power and D. Lee, eds. Naval Underwater Systems Center, TD7145, 1984.

    Google Scholar 

  148. A. B. Shamardan. The numerical treatment of the nonlinear Schrödinger equation. Comput. Math. Applic., 19 (7): 67–73, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  149. Q. Sheng and A. Q. M. Khaliq. A compound adaptive approach to degenerate nonlinear quenching problems. Numer. Methods Partial Differential Equations, 15: 29–47, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  150. Q. Sheng, A. Q. M. Khaliq, and E. A. Al-Said. Solving the generalized nonlinear Schrödinger equation via quartic spline approximation. J. Comput. Phys., 166: 400–417, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  151. G. L. G. Sleijpen. Strong stability results for the hopscotch method with applications to bending beam equations. Computing, 1989: 179–203, 41.

    Article  MathSciNet  MATH  Google Scholar 

  152. R. C. Smith, K. L. Bowers, and J. Lund. A fully sine—Galerkin method for the Euler—Bernoulli beam models. Numer. Methods Partial Differential Equations, 8: 17 1201, 1992.

    MathSciNet  Google Scholar 

  153. D. F. St. Mary. Analysis of an implicit finite—difference scheme for a third—order partial differential equation in three dimensions. Comput. Math. Appl., 11: 873–885, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  154. D. F. St. Mary and D. Lee. Analysis of an implicit finite difference solution to an underwater wave propagation problem. J. Comput. Phys., 57: 378–390, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  155. W. A. Strauss. The nonlinear Schrödinger equation, pages 452–465. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G. M. de la Penha and L. A. J. Medeiros, eds. North—Holland, New York, 1978.

    Google Scholar 

  156. P. L. Sulem, C. Sulem, and A. Patera. Numerical simulation of singular solutions to the two—dimensional cubic Schrödinger equation. Comm. Pure Appl. Math., 37: 755–778, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  157. H. Tal-Ezer and R. Kosloff. An accurate and efficient scheme for propagating the time—dependent Schrödinger equation. J. Chem. Phys., 81: 3967–3971, 1984.

    Article  Google Scholar 

  158. F. D. Tappert. The parabolic method, pages 224–287. Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, Vol. 70, J. B. Keller and J. S. Papadakis, eds. Springer—Verlag, New York, 1977.

    Google Scholar 

  159. D. J. Thomson and N. R. Chapman. A wide—angle split—step algorithm for the parabolic equation. J. Acoust. Soc. Amer., 74: 1848–1854, 1983.

    Article  MATH  Google Scholar 

  160. S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. Second Edition. McGraw—Hill, New York, 1959.

    Google Scholar 

  161. J. Todd. A direct approach to the problem of stability in the numerical solution of partial differential equations. Comm. Pure Appl. Math., 9: 597–612, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  162. Y. Tourigny. Optimal H 1 estimates for two time—discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal., 11: 509–523, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  163. Y. Tourigny. Some pointwise estimates for the finite element solution of a radial nonlinear Schrödinger equation on a class of nonuniform grids. Numer. Methods Partial Differential Equations, 10: 757–769, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  164. Y. Tourigny and J. LI. Morris. An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation. J. Comput. Phys., 76: 103–130, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  165. E. H. Twizell, A. G. Bratsos, and J. C. Newby. A finite—difference method for solving the cubic Schrödinger equation. Math. Comput. Simulation, 43: 67–75, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  166. E. H. Twizell and A. Q. M. Khaliq. A difference scheme with high accuracy in time for fourth—order parabolic equations. Comput. Meth. Appl. Mech. Engrg., 41: 91–104, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  167. E. H. Twizell and A. Q. M. Khaliq. Global extrapolation methods for fourth order parabolic partial differential equations. Arab Gulf. J. Scient. Res. Math. Phys. Sci., A6: 1–15, 1988.

    MathSciNet  MATH  Google Scholar 

  168. J. A. C. Weideman and A. Cloot. Spectral methods and mappings for evolution equations on the infinite line. Comput. Methods Appl. Mech. Engrg., 23: 467–481, 1990.

    Article  MathSciNet  Google Scholar 

  169. J. A. C. Weideman and B. M. Herbst. Split—step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 23: 485–507, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  170. J. H. Weiner and A. Askar. Particle method for the numerical solution of the time—dependent Schrödinger equation. J. Chem. Phys., 54: 3534–3541, 1971.

    Article  MathSciNet  Google Scholar 

  171. S. Woinowsky-Krieger. The effect of axial force on the vibration of hinged bars. J. Appl. Mech., 17: 35–36, 1950.

    MathSciNet  MATH  Google Scholar 

  172. J.-S. Wong, M.-L. Lee, and T.-S. Lai. The dynamic analysis of a flat plate under a moving load by the finite element method. Internat. J. Numer. Methods Engrg., 24: 743–762, 1987.

    Article  Google Scholar 

  173. L. Wu. Dufort—Frankel—type method for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal., 33: 1526–1533, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  174. V. E. Zakharov and D. B. Shabat. Exact theory of two—dimensional self—focusing and one—dimensional self—modulation of waves in nonlinear media. Soviet Physics JETP, 34: 62–69, 1972.

    MathSciNet  Google Scholar 

  175. O. C. Zienkiewicz. The Finite Element Method. Third Edition. McGraw Hill, London, 1977.

    MATH  Google Scholar 

  176. G. E. Zouraris. A conservative Crank—Nicolson—type finite difference method for the linear Schrödinger equation in a noncylindrical domain. Tech. Rept., TRITA—NA-9808, Department of Numerical Analysis and Computing Science (NADA), Royal Institute of Technology (KTH), Stockholm, Sweden, 1998.

    Google Scholar 

  177. G. E. Zouraris. On the convergence of a linear two—step finite element method for the non—linear Schrödinger equation. M2ANMath. Model. Numer. Anal., 35: 389–405, 2001.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fairweather, G., Khebchareon, M. (2002). Numerical Methods for Schrödinger-Type Problems. In: Siddiqi, A.H., Kočvara, M. (eds) Trends in Industrial and Applied Mathematics. Applied Optimization, vol 72. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0263-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0263-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7967-6

  • Online ISBN: 978-1-4613-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics