Skip to main content

Systems of Linear Algebraic Equations

  • Chapter
Book cover Computational Aspects of Linear Control

Part of the book series: Numerical Methods and Algorithms ((NUAL,volume 1))

Abstract

We consider the n × n system of linear equations

$$Ax = b$$

and restrict ourselves to real systems, the case of complex ones being an easy extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951) 17–29.

    MathSciNet  MATH  Google Scholar 

  2. G. Auchmuty, A posteriori error estimates for linear equations, Numer. Math., 61 (1992) 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Ayachour, Avoiding look-ahead in the Lanczos method and Padé approximation, Applicationes Mathematicae, 26 (1999) 33–62.

    MathSciNet  MATH  Google Scholar 

  4. C. Baheux, New implementations of the Lanczos method, J. Comput. Appl. Math., 57 (1995) 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.E. Bank, T.F. Chan, An analysis of the composite step bi-conjugate gradient algorithm for solving nonsymmetric systems, Numer. Math., 66 (1993) 295–319.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.E. Bank, T.F. Chan, A composite step bi-conjugate gradient algorithm for solving nonsymmetric systems, Numer. Algorithms, 7 (1994) 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1993.

    MATH  Google Scholar 

  8. D.L. Boley, S. Elhay, G.H. Golub, M.H. Gutknecht, Nonsymmetric Lanczos and finding orthogonal polynomials associated with indefinite weights, Numer. Algorithms, 1 (1991) 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Brezinski, Généralisations de la transformation de Shanks, de la table de Padé et de Fe-algorithme, Calcolo, 12 (1975) 317–360.

    Article  MathSciNet  Google Scholar 

  10. C. Brezinski, Rational approximation to formal power series, J. Approx. Theory, 25 (1979) 295–317.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials, Birkhäuser-Verlag, Basel, 1980.

    Google Scholar 

  12. C. Brezinski, Biorthogonality and its Applications to Numerical Analysis, Marcel Dekker, New York, 1992.

    MATH  Google Scholar 

  13. C. Brezinski, A unified approach to various orthogonalities, Ann. Fac. Sci. Toulouse, sér. 3, vol. I, fasc. 3 (1992), 277–292.

    Google Scholar 

  14. C. Brezinski, Biorthogonality and conjugate gradient-type algorithms, in Contributions in Numerical Mathematics, R.P. Agarwal ed., World Scientific, Singapore, 1993, pp. 55–70.

    Chapter  Google Scholar 

  15. C. Brezinski, Projection Methods for Systems of Equations, North-Holland, Amsterdam, 1997.

    Google Scholar 

  16. C. Brezinski, A transpose-free Lanczos/Orthodir algorithm for linear systems, C.R. Acad. Sci. Paris, Sér. I, 324 (1997) 349–354.

    MathSciNet  Google Scholar 

  17. C. Brezinski, Krylov subspace methods, biorthogonal polynomials and Padé-type approximants, Numer. Algorithms, 21 (1999) 97–107.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Brezinski, Error estimates for the solution of linear systems, SIAM J. Sci. Comput., 21 (1999)764–781.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Brezinski, C. Musschoot, Biorthogonal polynomials and the bordering method for linear systems, Rend. Sem. Mat. Fis. Milano, 64 (1994) 85–98.

    Article  MathSciNet  Google Scholar 

  20. C. Brezinski, M. Redivo-Zaglia, Treatment of near-breakdown in the CGS algorithm, Publication ANO 257, Laboratoire d’Analyse Numérique et d’Optimisation, Université des Sciences et Technologies de Lille, November 1991.

    Google Scholar 

  21. C. Brezinski, M. Redivo-Zaglia, A new presentation of orthogonal polynomials with applications to their computation, Numer. Algorithms, 1 (1991), 207–221.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Brezinski, M. Redivo-Zaglia, Treatment of near-breakdown in the CGS algorithm, Numer. Algorithms, 7 (1994) 33–73.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Brezinski, M. Redivo-Zaglia, Look-ahead in Bi-CGSTAB and other methods for linear systems, BIT, 35 (1995) 169–201.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Brezinski, M. Redivo Zaglia, Transpose-free implementations of Lanczos’ method for nonsymmetric linear systems, Publication ANO-372, Laboratoire d’Analyse Numérique et d’Optimisation, Université des Sciences et Technologies de Lille, June 1997.

    Google Scholar 

  25. C. Brezinski, M. Redivo Zaglia, Breakdowns in the computation of orthogonal polynomials, in Nonlinear Numerical Methods and Rational Approximation, A. Cuyt ed., Kluwer, Dordrecht, 1994, pp. 49–59.

    Google Scholar 

  26. C. Brezinski, M. Redivo Zaglia, Transpose-free Lanczos-type algorithms for nonsymmetric linear systems, Numer. Algorithms, 17 (1998) 67–103.

    Article  MATH  Google Scholar 

  27. C. Brezinski, M. Redivo-Zaglia, H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms, 1 (1991), 261–284.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Brezinski, M. Redivo-Zaglia, H. Sadok, Addendum to “Avoiding breakdown and near-breakdown in Lanczos type algorithms”, Numer. Algorithms, 2 (1992) 133–136.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Brezinski, M. Redivo-Zaglia, H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math., 63 (1992) 29–38.

    MathSciNet  MATH  Google Scholar 

  30. C. Brezinski, M. Redivo-Zaglia, H. Sadok, Breakdowns in the implementation of the Lânczos method for solving linear systems, Inter. J. Comp. Math. with Applics., 33 (1997) 31–44.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Brezinski, M. Redivo-Zaglia, H. Sadok, Problems of breakdown and near-breakdown in Lanczos-based algorithms, in Algorithms for Sparse Large Scale Linear Algebraic Systems, G. Winter Althaus and E. Spedicato eds., Kluwer, Dordrecht, 1998, pp. 271–290.

    Google Scholar 

  32. C. Brezinski, M. Redivo-Zaglia, H. Sadok, New look-ahead Lanczos-type algorithms for linear systems, Numer. Math., 83 (1999) 53–85.

    MathSciNet  MATH  Google Scholar 

  33. C. Brezinski, M. Redivo-Zaglia, H. Sadok, The matrix and polynomial approaches to Lanczos-type algorithms, J. Comput. Appl. Math., 123 (2000) 241–260.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Brezinski, M. Redivo-Zaglia, H. Sadok, A review of formal orthogonality in Lanczosbased methods, J. Comput. Appl. Math., to appear.

    Google Scholar 

  35. C. Brezinski, H. Sadok, Avoiding breakdown in the CGS algorithm, Numer. Algorithms, 1 (1991) 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Brezinski, H. Sadok, Lanczos-type algorithms for solving systems of linear equations, Appl. Numer. Math., 11 (1993) 443–473.

    MathSciNet  MATH  Google Scholar 

  37. C.G. Broyden, Look-ahead block-CG algorithms, Optim. Methods and Soft., to appear.

    Google Scholar 

  38. A.M. Bruaset, A Survey of Preconditioned Iterative Methods, Longman, Harlow, 1995.

    MATH  Google Scholar 

  39. T.F. Chan, T. Szeto, A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems, Numer. Algorithms, 7 (1994) 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  40. T.F. Chan, L. de Pillis, H.A. Van der Vorst, Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems, Numer. Algorithms, 17 (1998) 51–66.

    Article  MATH  Google Scholar 

  41. J.-M. Chesneaux, A.C. Matos, Breakdown and near-breakdown control in the CGS algorithm using stochastic arithmetic, Numer. Algorithms, 11 (1996) 99–116.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Cullum, A. Greenbaum, Relations between Galerkin and norm-minimizing iterative methods for solving linear systems, SIAM J. Matrix Anal. Appl., 17 (1996) 223–247.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Draux, Polynômes Orthogonaux Formels. Applications, LNM vol. 974, Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  44. A. Draux, Formal orthogonal polynomials revisited. Applications, Numer. Algorithms, 11 (1996)143–158.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. El Guennouni, A unified approach to some strategies for the treatment of breakdown in Lanczos-type algorithms, Applicationes Mathematicae, to appear.

    Google Scholar 

  46. R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, Dundee 1975, G.A. Watson ed., LNM vol. 506, Springer-Verlag, Berlin, 1976, pp.73–89.

    Google Scholar 

  47. D.R. Fokkema G.L.G. Sleijpen, H.A. Van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math., 71 (1996) 125–146.

    Article  MathSciNet  MATH  Google Scholar 

  48. D.R. Fokkema, Subspace Methods for Linear, Nonlinear, and Eigen Problems,Thesis, University of Utrecht, 1996.

    Google Scholar 

  49. R.W. Freund, Solution of shifted linear systems by quasi-minimal residual iterations, in Numerical Linear Algebra, L. Reichel, A. Ruttan and R.S. Varga eds., W. de Gruyter, Berlin, 1993, pp.101–121.

    Google Scholar 

  50. R.W. Freund, G.H. Golub, N.M. Nachtigal, Iterative solution of linear systems, Acta Numerica, 1 (1991) 57–100.

    Article  MathSciNet  Google Scholar 

  51. R.W. Freund, M.H. Gutknecht, N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993) 137–158.

    MathSciNet  MATH  Google Scholar 

  52. P.R. Graves-Morris, A “Look-around Lanczos” algorithm for solving a system of linear equations, Numer. Algorithms, 15 (1997) 247–274.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.

    MATH  Google Scholar 

  54. M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fractions, and the qd-algorithm, in Proceedings of the Copper Mountain Conference on Iterative Methods,Copper Mountain, Colorado, April 1–5, 1990, vol. 2, unpublished.

    Google Scholar 

  55. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. Appl., 13 (1992) 594–639.

    Article  MathSciNet  MATH  Google Scholar 

  56. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, SIAM J. Matrix Anal. Appl., 15 (1994) 15–58.

    Article  MathSciNet  MATH  Google Scholar 

  57. M.H. Gutknecht, K.J. Ressel, Look-ahead procedures for Lanczos-type product methods based on three-term recurrences, in Preliminary Proceedings of the Copper Mountain Conference on Iterative Methods, 1996.

    Google Scholar 

  58. M.H. Gutknecht, Z. Strakos, Accuracy of the three-term and two-term recurrences for Krylov space solvers, to appear.

    Google Scholar 

  59. Cs.J. Hegedüs, Generating conjugate directions for arbitrary matrices by matrix equations, Computers Math. Applic., 21 (1991) 71–85; 87–94.

    Article  Google Scholar 

  60. M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49 (1952) 409–436.

    MathSciNet  MATH  Google Scholar 

  61. N.J. Higham, The Test Matrix Toolbox for MATLAB (Version 3.0), Numerical Analysis Report 276, Dept. of Mathematics, The University of Manchester, 1995.

    Google Scholar 

  62. T. Kailath, A. Vieira, M. Morf, Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev., 20 (1978) 106–119.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Khelifi, Lanczos maximal algorithm for unsymmetric eigenvalue problems, Appl. Numer. Math., 7 (1991) 179–193.

    Article  MathSciNet  MATH  Google Scholar 

  64. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950) 255–282.

    MathSciNet  Google Scholar 

  65. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand., 49 (1952) 33–53.

    MathSciNet  Google Scholar 

  66. H. Le Ferrand, Vector Padé approximants and the Lanczos method for solving a system of linear equations, May 1994, unpublished.

    Google Scholar 

  67. V.Y. Pan, Structured Matrices and Polynomials, Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  68. B.N. Parlett, D.R. Taylor, Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comput., 44 (1985) 105–124.

    MathSciNet  MATH  Google Scholar 

  69. M.A. Pinar, V. Ramirez, Recursive inversion of Hankel matrices, Monogr. Acad. Ciencias Zaragoza, 1 (1988) 119–128.

    MathSciNet  Google Scholar 

  70. M.A. Pinar, V. Ramirez, Inversion of Toeplitz matrices, in Orthogonal Polynomials and their Applications, J. Vinuesa ed., Marcel Dekker, New York, 1989, pp.171–177.

    Google Scholar 

  71. Qiang Ye, A breakdown-free variation of the nonsymmetric Lanczos algorithm, Math. Comput., 62 (1994) 179–207.

    Article  MATH  Google Scholar 

  72. Qiang Ye, An adaptative block Lanczos algorithm, Numer. Algorithms, 12 (1996) 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Rissanen, Solution of linear equations with Hankel and Toeplitz matrices, Numer. Math., 22 (1974) 361–366.

    MathSciNet  MATH  Google Scholar 

  74. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publ. Co., Boston, 1996.

    MATH  Google Scholar 

  75. Y. Saad, M.H. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comput., 44 (1985) 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  76. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1989) 36–52.

    Article  MathSciNet  MATH  Google Scholar 

  78. D.R. Taylor, Analysis of the Look-Ahead Lanczos Algorithm, Ph.D. Thesis, Dept. of Mathematics, University of California, Berkeley, Nov. 1982.

    Google Scholar 

  79. C.H. Tong, Qiang Ye, A linear system solver based on a modified Krylov subspace method for breakdown recovery, Numer. Algorithms, 12 (1996) 233–251.

    Article  MathSciNet  MATH  Google Scholar 

  80. W. Trench, An algorithm for the inversion of finite Toeplitz matrices, SIAM J. Appl. Math., 12 (1964) 515–522.

    MathSciNet  MATH  Google Scholar 

  81. W. Trench, An algorithm for the inversion of finite Hankel matrices, SIAM J. Appl. Math., 13 (1965)1102–1107.

    Article  MathSciNet  MATH  Google Scholar 

  82. H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992) 631–644.

    Article  MATH  Google Scholar 

  83. J. van Iseghem, Vector Padé approximants, in Numerical Mathematics and Applications, R. Vichnevetsky and J. Vignes eds., North-Holland, Amsterdam, 1986, pp. 73–77.

    Google Scholar 

  84. P.K.W. Vinsome, ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations, in Proc. Fourth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, 1976, pp. 149–159.

    Google Scholar 

  85. D.M. Young, K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl., 34 (1980) 159–194.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brezinski, C. (2002). Systems of Linear Algebraic Equations. In: Brezinski, C. (eds) Computational Aspects of Linear Control. Numerical Methods and Algorithms, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0261-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0261-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0711-8

  • Online ISBN: 978-1-4613-0261-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics