Skip to main content

Part of the book series: Numerical Methods and Algorithms ((NUAL,volume 1))

  • 459 Accesses

Abstract

This Chapter constitutes an introduction to the domain of control of linear systems. It was mostly inspired by [3], [63], the introduction and survey given in [83] where the techniques relevant to linear algebra can be found, and the article on control theory in [49, vol. 1, art. 86]. We also refer to the encyclopedic volume [66], where most of the topics covered in this Chapter are represented. There exist an enormous literature on control theory and it is not our purpose to try to even give an account of it. Other interesting references are [90, 53, 64, 4, 32], the last one containing also many considerations about the historical development of the subject. Another excellent reference is [36]. The mathematical background needed can be found in [9]. The reference [65] explains, almost without any mathematics, the essence, the concepts and the main ideas of control theory. Another quite easy introduction to the subject is [91] which contains many examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Aliaga, D.L. Boley, R.W. Freund, V. Hernandez, A Lanczos-type algorithm for multiple starting vectors, Math. Comput., to appear (also as Numerical Analysis Manuscript 96–18, AT&T Bell Labs., 1996).

    Google Scholar 

  2. Z. Bai, P. Feldmann, R.W. Freund, Stable and passive reduced-order models based on partial Padé approximation via Lanczos process, Numerical Analysis Manuscript No. 97–3–10, Bell Laboratories, Murray Hill, New Jersey, USA, 1997.

    Google Scholar 

  3. S. Barnett, Polynomials and Linear Control Systems,Marcel Dekker, New York, 1983.

    MATH  Google Scholar 

  4. S. Barnett, R.G. Cameron, Introduction to Mathematical Control Theory,2nd edition, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  5. H. Bart, I. Gohberg, M.A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Birkhäuser, Basel, 1979.

    MATH  Google Scholar 

  6. G. Basile, G. Marro, Controlled and conditioned invariant subspaces in linear system theory, J. Optimiz. Th. Applic., 3 (1969) 305–315.

    Google Scholar 

  7. G. Basile, G. Marro, Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, 1992.

    MATH  Google Scholar 

  8. R.W. Bass, I. Gura, High-order system design via state-space considerations, Proc. Jt. Autom. Control Conf., Troy, 1965, pp. 311–318.

    Google Scholar 

  9. D.J. Bell, Mathematics of Linear and Nonlinear Systems, Clarendon Press, Oxford, 1990.

    Google Scholar 

  10. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.

    MATH  Google Scholar 

  11. D. Bini, V. Pan, Polynomial and Matrix Computations. Volume 1: Fundamental Algorithms, Birkhäuser, Boston, 1994.

    Book  Google Scholar 

  12. H.W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, Princeton, 1945.

    Google Scholar 

  13. C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials, ISNM vol. 50, Birkhäuser, Basel, 1980

    MATH  Google Scholar 

  14. C. Brezinski, Partial Padé approximation, J. Approx. Theory, 54 (1988) 210–233.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Brezinski, Projection Methods for Systems of Equations, North-Holland, Amsterdam, 1997.

    MATH  Google Scholar 

  16. C. Brezinski, Multiparameter descent methods, Linear Algebra Appl., 296 (1999) 113–142.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Brezinski, Model reduction of MIMO systems and Padé approximants, Note ANO-409, Laboratoire d’Analyse Numérique et d’Optimisation, Université des Sciences et Technologies de Lille, 2000.

    Google Scholar 

  18. A. Bultheel, B. de Moor, Rational approximation in linear systems and control, J. Comput. Appl. Math., to appear.

    Google Scholar 

  19. A. Bultheel, M. van Barel, Padé techniques for model reduction in linear system theory: a survey, J. Comput. Appl. Math., 14 (1986) 401–438.

    Article  MathSciNet  Google Scholar 

  20. A. Bultheel, M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials,North-Holland, Amsterdam, 1997.

    MATH  Google Scholar 

  21. C.K. Chui, G. Chen, Kalman Filtering with Real-Time Applications, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  22. C.K. Chui, G. Chen, Linear Systems and Optimal Control, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  23. B.W. Dickinson, M. Morf, T. Kailath, A minimal realization algorithm for matrix sequences, IEEE Trans. Autom. Control, AC-19 (1974) 31–38.

    Article  MathSciNet  Google Scholar 

  24. V. Dragan, A. Halanay, Stabilization of Linear Systems, Birkhäuser, Boston, 1999.

    Book  MATH  Google Scholar 

  25. G.E. Dullerud, F. Paganini, A Course in Robust Control Theory. A convex Approach,Springer-Verlag, New York, 2000.

    Google Scholar 

  26. D.B. Fairbrother, Reactor protection system design using micro-computers, IEEE Trans. Nuclear Sci., NS-24 (1977) 766–770.

    Article  Google Scholar 

  27. P.L. Falb, W.A. Wolovich, Decoupling in the design and synthesis of multivariable control systems, IEEE Trans. Autom. Control, AC-12 (1967) 651–659.

    Article  Google Scholar 

  28. P. Feldmann, R.W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comput.-Aided Design, 14 (1995) 639–649.

    Article  Google Scholar 

  29. P. Feldmann, R.W. Freund, Reduced-order modeling of large linear subcircuits via a block Lanczos algorithms, in Proceedings of the 32nd Design Automation Conference, San Francisco, California, Association for Computing Machinery, 1995, pp. 474–479 (also as Numerical Analysis Manuscript 94–11, AT&T Bell Labs., 1994).

    Google Scholar 

  30. R.W. Freund, Computing minimal partial realizations via a Lanczos-type algorithm for multiple starting vectors, in Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, 1997, pp. 4394–4399.

    Google Scholar 

  31. R.W. Freund, Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, in Applied and Computational Control, Signals, and Circuits, Volume 1, B.N. Datta ed., Birkhäuser, Boston, 1999, pp. 435–498.

    Chapter  Google Scholar 

  32. B. Friedland, Control System Design, McGraw-Hill, New York, 1986.

    MATH  Google Scholar 

  33. K. Gallivan, E. Grimme, P. Van Dooren, A rational Lanczos algorithm for model reduction, Numer. Algorithms, 12 (1996) 33–63.

    Article  MATH  Google Scholar 

  34. F.R. Gantmacher, The Theory of Matrices, vol. 2, Chelsea Publ. Co., New York, 1989.

    Google Scholar 

  35. E.G. Gilbert, Controllability and observability in multivariable control systems, SIAM J. Control, ser. A, 2 (1963) 128–151.

    Google Scholar 

  36. T. Glad, L. Ljung, Control Theory. Multivariable and Nonlinear Methods, Taylor and Francis, London, 2000.

    Google Scholar 

  37. I. Gohberg, R Lancaster, L. Rodman, Matrices and Indefinite Scalar Products, Birkhäuser, Basel, 1983.

    MATH  Google Scholar 

  38. W.B. Gragg, Matrix interpretations and applications of the continued fraction algorithms, Rocky Mountains J. Math., 4 (1974) 213–226.

    Article  MathSciNet  Google Scholar 

  39. W.B. Gragg, A. Lindquist, On the partial realization problem, Linear Algebra Appl., 50 (1983) 277–319.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Grimme, D. Sorensen, P. Van Dooren, Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1996) 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  41. E.J. Henley, H. Kumamoto, Designing for Reliability and Safety Control, Prentice-Hall, Englewood Cliffs, NJ, 1985.

    Google Scholar 

  42. R Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley, New York, 1977.

    MATH  Google Scholar 

  43. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.

    Google Scholar 

  44. B.L. Ho, R.E. Kalman, Effective construction of linear state—variable models from input/output functions, in Proc. 3rd Annual Allerton Conf. on Circuit and System Theory, University of Illinois, Urbana, 1965, pp. 449–459.

    Google Scholar 

  45. B.L. Ho, R.E. Kalman, Effective construction of linear state-variable models from input/output functions, Regelungstechnik 14 (1966) 545–548.

    MATH  Google Scholar 

  46. A. Hurwitz, Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt (On the conditions under which an equation has only roots with negative real parts), Math. Ann., 46 (1895) 273–284.

    Article  MathSciNet  Google Scholar 

  47. K. Huseyin, Multiple Parameter Stability Theory and its Applications,Clarendon Press, Oxford, 1986.

    MATH  Google Scholar 

  48. V. Ionescu, A. Stoica, Robust Stabilisation and H°° Problems,Kluwer, Dordrecht, 1999.

    Book  Google Scholar 

  49. K. Itô, ed., Encyclopedic Dictionary of Mathematics, 2nd edition, The MIT Press, Cambridge, 1987.

    MATH  Google Scholar 

  50. R. Jeltsch, M. Mansour, eds., Stability Theory, Hurwitz Centenary Conference, Centro Stefano Franscini, Ascona, 1995, Birkhäuser, Basel, 1996.

    Google Scholar 

  51. E.I. Jury, Theory and Application of the z-Transform Method, Wiley, New York, 1964.

    Google Scholar 

  52. E.I. Jury, From J.J. Sylvester to Adolf Hurwitz: a historical review, in Stability Theory, R. Jeltsch and M. Mansour eds., Birkhâuser, Basel, 1996, pp. 53–65.

    Google Scholar 

  53. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, 1980.

    MATH  Google Scholar 

  54. R.E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., 5 (1960) 102–119.

    MathSciNet  Google Scholar 

  55. R.E. Kalman, On the general theory of control systems, in Proc. 1st International Congress on Automatic Control, Moscow, 1960; Butterworths, London, 1961, Vol. 1, pp. 481–492.

    Google Scholar 

  56. R.E. Kalman, Canonical structure of linear dynamical systems, Proc. Nat. Acad. Sci. USA, 48 (1962) 596–600.

    Article  MathSciNet  MATH  Google Scholar 

  57. R.E. Kalman, Mathematical description of linear dynamical systems, J. SIAM Control, ser. A, 1 (1963) 152–192.

    MathSciNet  MATH  Google Scholar 

  58. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, ASME J. Basic Eng., ser. D, 83 (1961) 95–108.

    MathSciNet  Google Scholar 

  59. W.G. Kelley, A.C. Peterson, Difference Equations. An Introduction with Applications, Academic Press, Boston, 1991.

    MATH  Google Scholar 

  60. S. Kung, A new identification and model reduction algorithm via singular value decomposition, in Proc. 12th Asilomar Conf. Circuits Syst. Comp.,1978, pp. 705–714.

    Google Scholar 

  61. V. Lakshmikantham, D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York, San Diego, 1988.

    MATH  Google Scholar 

  62. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950) 255–282.

    MathSciNet  Google Scholar 

  63. W. Ledermann et al., eds., Handbook of Applicable Mathematics. Supplement, Wiley, Chichester, 1990.

    MATH  Google Scholar 

  64. J.R. Leigh, Functional Analysis and Linear Control Theory, Academic Press, New York, 1980.

    MATH  Google Scholar 

  65. J.R. Leigh, Control Theory. A Guided Tour, Peter Peregrimus, London, 1992.

    MATH  Google Scholar 

  66. W.S. Levine, ed. The Control Handbook, CRC Press, Boca Raton, 1996.

    MATH  Google Scholar 

  67. F.L. Lewis, Applied Optimal Control and Estimation, Prentice-Hall, Engelwood Cliffs, 1992.

    Google Scholar 

  68. B. Liu, Effect of word length on the accuracy of digital filters - A review, IEEE Trans. Autom. Control, AC-18 (1971) 670–677.

    Google Scholar 

  69. D.G. Luenberger, Observers for multivariable systems, IEEE Trans. Autom. Control, AC-11 (1966) 190–197.

    Article  Google Scholar 

  70. D.G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.

    MATH  Google Scholar 

  71. A.M. Lyapunov, The General Problem of Stability of Motion (in Russian), Thesis, Kharkov, 1892 (translation by A.T. Fuller, Int. J. Cont., 55 (1992) 531–773).

    Google Scholar 

  72. J.L. Martins de Carvalho, Dynamical Systems and Automatic Control,Prentice Hall, Englewood Cliffs, 1993.

    MATH  Google Scholar 

  73. S.J. Mason, Feedback theory - some properties of signal-flow graphs, Proc. IRE, September 1953, pp. 1144–1156.

    Google Scholar 

  74. S.J. Mason, Feedback theory - further properties of signal-flow graphs, Proc. IRE, July 1956, pp. 920–926.

    Google Scholar 

  75. G.S. Miminis, C.C. Paige, An algorithm for pole assignment of time invariant linear systems, Int. J. Control, 35 (1982) 341–354.

    Article  MathSciNet  MATH  Google Scholar 

  76. G.S. Miminis, C.C. Paige, An algorithm for pole assignment of time invariant multi-input linear systems, in Proc. 21st IEEE Conference on Decision and Control, Dec. 8–10, 1982, Orlando, Vol. 1, pp. 62–67.

    Google Scholar 

  77. G.S. Miminis, C.C. Paige, A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback, Automatica, 24 (1988) 343–356.

    Article  MathSciNet  MATH  Google Scholar 

  78. C.B. Moler, C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20 (1978) 801–836.

    Article  MathSciNet  MATH  Google Scholar 

  79. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control, AC-26 (1981) 17–31.

    Article  Google Scholar 

  80. K.L. Moore, Iterative learning control: an expository overview, in Applied and Computational Control, Signals, and Circuits, Volume 1, B.N. Datta ed., Birkhäuser, Boston, 1999, pp. 151–214.

    Chapter  Google Scholar 

  81. A.G.O. Mutambara, Design and Analysis of Control Systems, CRC Press, Boca Raton, 1999.

    MATH  Google Scholar 

  82. N.S. Nise, Control Systems Engineering, 2nd ed., Benjamin/Cummings, Redwood City, 1995.

    Google Scholar 

  83. R.V. Patel, A.J. Laub, P.M. Van Dooren, eds., Numerical Linear Algebra Techniques for Systems and Control, IEEE Press, New York, 1994.

    MATH  Google Scholar 

  84. L. Pillage, R. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Comput.-Aided Design, 9 (1990) 352–366.

    Article  Google Scholar 

  85. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes,Pergamon Press, Oxford, 1964.

    MATH  Google Scholar 

  86. A. Rachid, D. Mehdi, Réalisation, Réduction et Commande des Systèmes Linéaires, Éditions Technip, Paris, 1997.

    MATH  Google Scholar 

  87. Z.V. Rekasius, Decoupling of multivariable systems by means of state variable feedback, Proc. 3rd Allerton Conf., 1965, pp. 439–448.

    Google Scholar 

  88. E.J. Routh, A Treatise on the Stability of a Given State of Motion,Macmillan, London, 1877.

    Google Scholar 

  89. E.J. Routh, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies,Macmillan, London, 1892.

    MATH  Google Scholar 

  90. J.E. Rubio, The Theory of Linear Systems, Academic Press, New York, 1971.

    MATH  Google Scholar 

  91. P.E. Sarachik, Principles of Linear Systems, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  92. Y. Shamash, Multivariable system reduction via modal methods and Padé approximation, IEEE Trans. Autom. Control, AC-20 (1974) 815–817.

    MathSciNet  Google Scholar 

  93. L.S. Shieh, J. Gu, Y.L. Bao, Model conversions of uncertain linear systems using the Padé and inverse-Padé method, IEE Proc., Part. D, 140 (1993) 455–464.

    MATH  Google Scholar 

  94. L.S. Shieh, J. Gu, J.S.H. Tsai, Model conversions of uncertain linear systems via the interval Padé approximation method, Circuits Syst. Signal Process., 15 (1996) 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  95. P.M. van Dooren, P. Dewilde, Minimal cascade factorization of real and complex rational transfer matrices, IEEE Trans. Circuits Syst., CAS-28 (1981) 390–400.

    Article  Google Scholar 

  96. P. van Overschee, B. De Moor, Subspace Identification for Linear Systems, Kluwer, Dordrecht, 1996.

    MATH  Google Scholar 

  97. R. Vich, z-Transform. Theory and Applications, Reidel, Dordrecht, 1987.

    MATH  Google Scholar 

  98. J. Vignes, A stochastic arithmetic for reliable scientific computation, Math. Comput. Simul., 35 (1993) 233–261.

    Article  MathSciNet  Google Scholar 

  99. L. Weiss, R.N. McDonough, Prony’s method, z-transforms, and Padé approximation, SIAM Rev., 5 (1963) 145–149.

    Article  MathSciNet  Google Scholar 

  100. D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.

    Google Scholar 

  101. W.A. Wolovich, Output feedback decoupling, IEEE Trans. Autom. Control, AC-20 (1975) 148–149.

    Article  MathSciNet  Google Scholar 

  102. W.M. Wonham, Linear Multivariate Control,A Geometric Approach, 3rd ed., Springer-Verlag, New York, 1985.

    Google Scholar 

  103. W.M. Wonham, A.S. Morse, Decoupling and pole assignment in linear multivariable systems: a geometric approach, SIAM J. Control Optimiz., 8 (1970) 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  104. H. Zeiger, A. McEwen, Approximate linear realizations of given dimension via Ho’s algorithm, IEEE Trans. Autom. Control, AC-19 (1974) 153.

    Article  Google Scholar 

  105. R. Zippel, Effective Polynomial Computation, Kluwer, Dordrecht, 1993.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brezinski, C. (2002). Control of Linear Systems. In: Brezinski, C. (eds) Computational Aspects of Linear Control. Numerical Methods and Algorithms, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0261-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0261-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0711-8

  • Online ISBN: 978-1-4613-0261-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics