Skip to main content

Classical and Quantum Controlled Lattices: Self-Organization, Optimization and Biomedical Applications

  • Chapter
Biocomputing

Part of the book series: Biocomputing ((BCOM,volume 1))

Abstract

This paper presents new mathematical models of classical (CL) and quantum-mechanical lattices (QML). System—theoretic results on the observability, controllability and minimal realizability theorems are formulated for CL. The cellular dynamaton (CD) based on quantum oscillators is presented. We investigate the conditions when stochastic resonance can occur through the interaction of dynamical neurons with intrinsic deterministic noise and an external periodic control. We found a chaotic motion in phase—space surrounding the separatrix of dynamaton. The suppression of chaos around the hyperbolic saddle arises only for a critical external control field strength and phase. The possibility of the use of bilinear lattice models for simulating the CA3 region of the hippocampus (a common location of the epileptic focus) is discussed. This model consists of a hexagonal CD of nodes, each describing a controlled neural network model consisting of a group of prototypical excitatory pyramidal cells and a group of prototypical inhibitory interneurons connected via excitatory and inhibitory synapses. A nonlinear phenomenon in this neural network is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., and Marsden J. (1978), Foundation of Mechanics, Benjamin-Cummings. Reading, MA.

    Google Scholar 

  2. Arnold, V. (1974), Mathematical methods of classical mechanics, Springer-Verlag, New-York.

    Google Scholar 

  3. Belair J., Glass L., an der Heiden U., and Milton J. eds. (1995), Dynamical disease-Mathematical Analysis of Human Illness, American Institute of Physics Press, Williston.

    MATH  Google Scholar 

  4. Brockett, R. (1973), Lie algebras and Lie groups in control theory, in Geometric mehods in system theory (Proc. of the NATO Advanced Study Institute held at London, August 27 September 7, Mayne, D. and Brockett, R. (eds.), D. Reidel Publishing Company, Dordrecht—Holland/Boston.

    Google Scholar 

  5. Butkovskiy, A. and Samoilenko, Yu. (1990), Control of quantum-mechanical processes and systems, Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  6. Crouch, P. (1985), Variation characterization of Hamiltonian systems in IMA J. Math. Cont. and Inf. Vol. 3, 123–130.

    Google Scholar 

  7. Destexhe A., Mainen Z. and Sejnowski T.J. (1994), Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Computational Neurosci. 1: 195–230.

    Article  Google Scholar 

  8. Dirac, R (1958), The principles of quantum mechanics, Clarendon Press, Oxford.

    MATH  Google Scholar 

  9. Dubrovin, B., Novikov, S., and Fomenko, A. (1984), Modern geometry-Methods and Applications, Part. 1, Graduate text in mathematics, Vol. 93, Springer-Verlag, New York.

    Google Scholar 

  10. Feynman, R. (1982), Simulating physics with computers, Int. Journal of Theoretical Physics, Vol. 21, 467–475.

    Article  MathSciNet  Google Scholar 

  11. Feynman, R. (1985), Quantum Mechanical Computers, Optics News, Vol. 11, 11–20.

    Article  Google Scholar 

  12. Freeman, W. and Skarda, C. (1985), Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view, Brain Research Reviews, Vol. 10, 147–175.

    Article  Google Scholar 

  13. Freeman, W. (2000), Neurodynamics: An Exploration of Mesoscopic Brain Dinamics, Springer-Verlag, London.

    Google Scholar 

  14. Gomatam, R. (1999), Quantum Theory and the Observation Problem, in Reclaiming Cognition. The primaci of action, intention and emotion, Núñez, R. and Freeman, W. (eds.), Imprint Academic, UK, 173–190.

    Google Scholar 

  15. Haken, H. (1996), Principles of brain funcioning: a sinergetic approach to brain activity, activity, behaviour, and cognition, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  16. Hendricson, A. (1995), The molecular problem: Exploiting structure in global optimization SIAM J. Optimization, Vol. 5, 835–857.

    Article  Google Scholar 

  17. Hiebeler, D. and Tater, R. (1997), Cellular automata and discrete physics Introduction to Nonlinear Physics, Lui Lam (ed.), Springer, New York-Berlin, 143–166.

    Google Scholar 

  18. Hodgkin, A. and Hukley, A. (1952), The components of membrane conductance in the giant axon of Lofigo, in J. Physiol., Vol. 116, 473–496.

    Google Scholar 

  19. Hopfield, J. and Tank, D. (1985), “Neural” computation of decision in optimization problems Biol. Cybern. Vol. 52, 141–152.

    MathSciNet  MATH  Google Scholar 

  20. Hopfield, J. (1994), Neurons, dynamics and computation Phys. Today Vol. 47, No. 2, 40–46.

    Article  Google Scholar 

  21. Horst, R. and Pardalos, P. (1995), Hadbook of Global Optimization, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  22. Jibu, M. and Yassue, K. (1995), Quantum Brain Dynamics and Consciouness: An introduction, John Benjamin Publishing Company, Amstedam/Philadelphia.

    Google Scholar 

  23. Jurdjevic, V. (1997), Geometric Control Theory, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  24. Kandel, E., Schwartz, J., and Jessell, T. (1991), Prinziples of Neural Science, Elsevier, New York.

    Google Scholar 

  25. Kaneko, K. (1993), The coupled map lattice, in Theory and Application of Coupled Map Lattices, Kanepo, K. (ed), John Wiley and Sons, Chicheste-New York-Brishbane-Toronto-Singapure, 1–50.

    Google Scholar 

  26. Kaneko, K. (2001), Complex system: chaos and beyond: a constructive approach with applications in life sciences, Springer-Verlag, Berlin

    MATH  Google Scholar 

  27. Kelso, J. A. S. (1995). Dynamic Patterns: The Self-Organization of Brain and Behavior. MIT Press, Cambridge, MA.

    Google Scholar 

  28. Klimontovich, Yu. (1995), Statistical theory of open systems, Kluwer Academic Publishers, Dordrecht, Boston.

    Book  MATH  Google Scholar 

  29. Landau, L. and Lifshitz, E. (1976), Mechanics, Pergamon Press, Oxford, New York.

    Google Scholar 

  30. Lamer, R., Speelman,B. and Worth, R. (1997), A coupled ordinary differential equation lattice model for the simulation of epileptic seizures, Chaos, Vol. 9, 795–804.

    Google Scholar 

  31. Lloyd, S. (1993), A potentially realizable quantum computer, Science, Vol. 261, 1569–1571.

    Article  Google Scholar 

  32. Loskutov, A. and Mikhailov, A. (1990), Introduction to synergetics, Nauka, Moscow (in Russian).

    Google Scholar 

  33. Mahler, G. and Weberruss, V. (1995), Quantum networks: dynamics of open nanostructures, Berlin, Springer.

    Google Scholar 

  34. Marcus, L. (1973), General theory of global dynamics, in Geometric Methods in System Theory, Mayne D.Q. and Brockett, R.W. (eds.), D. Reidel Publisching Company, Dodrecht-Boston, 150–158.

    Google Scholar 

  35. Melnikov, V. (1963), On the stability of the center for time-periodic perturbations Trans. Moscow. Math. Soc., Vol. 12, No. 1, 1–56.

    Google Scholar 

  36. Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muskle fiber, Biophys. J., Vol. 35, 193–213.

    Article  Google Scholar 

  37. Pardalos, P., Liu, X., and Xue, G. (1997), Protein conformation of a lattice model using tabu search, Journal of Global Optimization, Vol. 11, No. 1, 55–68.

    Article  MathSciNet  MATH  Google Scholar 

  38. Pardalos, P., Floudas, C., and Klepeis, J. (1999), Global Optimization Approaches in Protein Folding and Peptide Docking, in Math. Sup. for Molec. Biol., DIMACS Series, Vol. 47, Amer.Math. Soc., 141–171.

    Google Scholar 

  39. Ray, D. (1992), Inhibition of chaos in bistable Hamiltonian systems by a critical external resonances, Phys. Rew. A, Vol. 46, No. 10, 5975–5977.

    Google Scholar 

  40. Sackellares, C., Iasemidis, L., Shiau, D., Gilmore, R. and Roper, S. (2000), Epilepsy — when chaos fails, in Chaos in Brain?, Lehnertz, K., Arnold, J., Grassberger, P. and Elger, C. (Eds.), World Scientific, 112–133.

    Chapter  Google Scholar 

  41. Samoilenko, Yu. and Yatsenko, V. (1991), Quantum Mechanical Approach to Optimization Problems, in International Conference on Optimimization Techniques, Vladivostoc, Institute of Control Problems, Moscow.

    Google Scholar 

  42. Traub, R., Miles, R. and Jeffreys, J. (1993), Synaptic and intrinsic conductances shape picrotoxin–induced synchronized after discharges in the quinca pig hippocampal slice, J. Physiol. (London), Vol. 461, 525–547.

    Google Scholar 

  43. Van der Shaft, A. (1982), Controllability and observability for affine nonlinear Hamiltonian systems, IEEE Trans. Aut. Cont., Vol. AC-27, 490–494.

    Google Scholar 

  44. Xue, G., Zall, A. and Pardalos, P. (1996), Rapid evaluation of potencial energy functions in molecular and protein conformation, in DIMACS Series, Vol. 23, Amer. Math. Soc., 237–249.

    Google Scholar 

  45. Yatsenko, V. (1993), Quantum Mechanical Analogy of Bellman Optimal Principle for Control Dynamical Processes, Cybernetics and Computing Techniques, Vol. 99, 43–49.

    MathSciNet  Google Scholar 

  46. Yatsenko, V. (1995), Hamiltomian model of a transputer type quantum dynamaton, in Quantum Communications and Measurement, Plenum Publishing Corporation, New York.

    Google Scholar 

  47. Yatsenko, V. (1996), Determining the characteristics of water pollutants by neural sensors and pattern recognition methods, Journal of Chromatography, Vol. 722, No. 1+2, 233–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pardalos, P.M., Sackellares, J.C., Yatsenko, V.A. (2002). Classical and Quantum Controlled Lattices: Self-Organization, Optimization and Biomedical Applications. In: Pardalos, P.M., Principe, J. (eds) Biocomputing. Biocomputing, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0259-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0259-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7965-2

  • Online ISBN: 978-1-4613-0259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics