Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 4))

Abstract

If s is a fixed positive integer and n is any nonnegative integer, let r s (8n + s) be the number of solutions of the equation

$$x_1^2 + x_2^2 + ... + x_s^2 = 8n + s$$

in integers x 1, x 2,…, x s , and let r * s (8n + s) be the number of solutions of the same equation in odd integers. Alternatively, r * s (8n + s) is the number of ways of expressing n as a sum of triangular numbers, i.e., the number of solutions of the equation

$$\frac{{{y_1}({y_1} - 1)}}{2} + \frac{{{y_2}({y_2} - 1)}}{2} + ... + \frac{{{y_s}({y_s} - 1)}}{2} = n$$

in integers y l, y 2,…,y s . It is known that for 1 ≤ s ≤ 7 there exists a positive constant c s such that

$${r_s}(8n + s) = {c_s}{r_s}^*(8n + s)$$

for all nonnegative integers n. In this paper we prove that if s > 7, then no constant c s exists such that (*) holds, even for all sufficiently large n. The proof uses the theory of modular forms of weight s/2 and appropriate multiplier system on the group Γ0(64) and the so-called principle of the preservation of modularity under congruence restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71(1951), 70–101.

    Article  MathSciNet  MATH  Google Scholar 

  2. Paul T. Bateman and Marvin I. Knopp, Some new old-fashioned modular identities, Ramanujan J. 2 (1998), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  3. Leonard E. Dickson, Studies in the Theory of Numbers,Chapter 13, University of Chicago Press, Chicago, 1930.

    Google Scholar 

  4. Marvin I. Knopp, Modular Functions in Analytic Number Theory, 2nd ed., Chelsea Publishing Co., New York, 1993.

    MATH  Google Scholar 

  5. Joseph Lehner, A Short Course in Automorphic Functions,Holt, Rinehart and Winston, New York, 1966.

    MATH  Google Scholar 

  6. Ken Ono, Parity of the partition function in arithmetic progressions, J. Reine Angew. Math. 472 (1996), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold Walfisz, Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Zeit. 19 (1924), 300–307.

    Article  MathSciNet  Google Scholar 

  8. André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bateman, P.T., Datskovsky, B.A., Knopp, M.I. (2001). Sums of Squares and the Preservation of Modularity under Congruence Restrictions. In: Garvan, F.G., Ismail, M.E.H. (eds) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Developments in Mathematics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0257-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0257-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0101-7

  • Online ISBN: 978-1-4613-0257-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics