The Rectilinear Steiner Tree Problem: A Tutorial

  • Martin Zachariasen
Part of the Combinatorial Optimization book series (COOP, volume 11)


We give a tutorial on the rectilinear Steiner tree problem in the plane. First, fundamental structural results are given with full proofs. Then, recent exact algorithms allowing the solution of problem instances with several thousand terminals are presented, and finally we review some of the many heuristics proposed for the problem.


Minimum Span Tree Corner Point Exact Algorithm Steiner Point Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems. Journal of the ACM, 45(5):753–782, 1998.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    P. Berman and V. Ramaiyer. Improved Approximations for the Steiner Tree Problem. Journal of Algorithms,17(3):381–408, 1994.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D. Cieslik. Steiner Minimal Trees. Kluwer Academic Publishers, Boston, 1998.MATHGoogle Scholar
  4. [4]
    D. Cieslik. The Steiner Ratio. Kluwer Academic Publishers, Boston, (to appear).Google Scholar
  5. [5]
    M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem is NP-Complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. X. Goemans and Y. S. Myung. A Catalog of Steiner Tree Formulations. Networks, 23:19–28, 1993.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    L. J. Guibas and J. Stolfi. On Computing All North-East Nearest Neighbors in the L 1 Metric. Information Processing Letters,17:219–223, 1983.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    M. Hanan. On Steiner’s Problem with Rectilinear Distance. SIAM Journal on Applied Mathematics, 14(2):255–265, 1966.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. Hetzel. Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. PhD thesis, Institute for Discrete Mathematics, University of Bonn, 1995.MATHGoogle Scholar
  10. [10]
    J.-M. Ho, G. Vijayan, and C. K. Wong. New Algorithms for the Rectilinear Steiner Tree Problem. IEEE Transactions on Computer-Aided Design, 9(2):185–193, 1990.CrossRefGoogle Scholar
  11. [11]
    F. K. Hwang. On Steiner Minimal Trees with Rectilinear Distance. SIAM Journal on Applied Mathematics,30:104–114, 1976.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands, 1992.Google Scholar
  13. [13]
    A. B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer Academic Publishers, Boston, 1995.MATHGoogle Scholar
  14. [14]
    T. Koch and A. Martin. Solving Steiner Tree Problems in Graphs to Optimality. Networks, 33:207–232, 1998.MathSciNetCrossRefGoogle Scholar
  15. [15]
    I. Mandoiu, V. V. Vazirani, and J. L. Ganley. A New Heuristic for Rectilinear Steiner Trees. IEEE Transactions on CAD, 19:1129–1139, 2000.Google Scholar
  16. [16]
    D. S. Richards and J. S. Salowe. A Simple Proof of Hwang’s Theorem for Rectilinear Steiner Minimal Trees. Annals of Operations Research, 33:549–556, 1991.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Minimal Trees in a Day. Networks, 25(2):69–87, 1995.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    E. Uchoa, M. Poggi de Aragão, and C. Ribeiro. Preprocessing Steiner Problems from VLSI Layout. Technical Report MCC. 32/99, PUC-Rio, Brazil, 1999.Google Scholar
  19. [19]
    D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, Computer Science Dept., The University of Virginia, 1998.Google Scholar
  20. [20]
    D. M. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane Steiner Tree Problems: A Computational Study. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, editors, Advances in Steiner Trees, pages 81–116. Kluwer Academic Publishers, Boston, 2000.Google Scholar
  21. [21]
    D. M. Warme, P. Winter, and M. Zachariasen. GeoSteiner 3.1. Department of Computer Science, University of Copenhagen (DIKU), URL,2001.
  22. [22]
    P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane. Networks, 15:323–345, 1985.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    P. Winter. Reductions for the Rectilinear Steiner Tree Problem. Networks, 26:187–198, 1995.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    M. Zachariasen. Rectilinear Full Steiner Tree Generation. Networks, 33:125–143, 1999.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    A. Z. Zelikovsky. An 11/8-approximation Algorithm for the Steiner Problem on Networks with Rectilinear Distance. In Janos Bolyai Math-ematica Societatis Conf.: Sets, Graphs, and Numbers, pages 733–745, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Zachariasen
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations