Skip to main content

A New Approach in Deterministic Global Optimisation of Problems with Ordinary Differential Equations

  • Conference paper

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 74))

Abstract

This paper presents an alternative approach to the deterministic global optimisation of problems with ordinary differential equations in the constraints. The algorithm uses a spatial branch-and-bound approach and a novel procedure to build convex underestimation of nonconvex problems is developed. Each nonconvex functional in the original problem is underestimated by adding a separate convex quadratic term. Two approaches are presented to compute rigorous values for the weight coefficients of the quadratic terms used to relax implicitly known state-dependent functionals. The advantages of the proposed underestimation procedure are that no new decision variables nor constraints are introduced in the relaxed problem, and that functionals with state-dependent integral terms can be directly handled. The resulting global optimisation algorithm is illustrated on several case studies which consist in parameter estimation and simple optimal control problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjiman C. S., Dallwig S., Floudas C. A. and Neumaier A. (1998a), “A global optimization method, αBB, for general twice differentiable constrained NLPs - I. Theoretical advances”, Computers and Chemical Engineering, 22(9):1137–1158.

    Article  Google Scholar 

  2. Adjiman C. S., Dallwig S. and Floudas C. A. (1998b), “A global optimization method, aBB, for general twice differentiable constrained NLPs - II. Implementation and computational results”, Computers and Chemical Engineering, 22(9):1159–1179.

    Article  Google Scholar 

  3. Androulakis I., Maranas C. D. and Floudas C. A. (1995), “αBB: A global optimization method for general constrained nonconvex problems”, Journal of Global Optimization, 7:337–363.

    Article  MathSciNet  MATH  Google Scholar 

  4. Banga J. R. and Seider W. D. (1996), “Global optimization of chemical processes using stochastic algorithms”, In: “State of the Art in Global Optimization”, C. A. Floudas and P. M. Pardalos Editors, Series in nonconvex optimization and its applications, pp. 563–583, Dordrecht, Kluwert Academic Publishers.

    Google Scholar 

  5. Biegler L. T. (1984), “Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation”, Computers and Chemical Engineering, 8(3/4):243–248.

    Article  Google Scholar 

  6. Bischof C., Carle A., Corliss G., Griewank A., Hovland P. (1992), “ADIFOR- Generating Derivative Codes from Fortran Programs” Scientific Programming, 1:1–29.

    Google Scholar 

  7. Boender C. G. and Romeijn H. E. (1995), “Stochastic methods”, In: “Handbook of Global Optimization”, R. Horst and P. M. Pardalos Editors, Series in nonconvex optimization and its applications, pp. 829–869, Dordrecht, Kluwert Academic Publishers.

    Google Scholar 

  8. Brenan K. E., Campbell S. E. and Petzold L. R. (1989), “Numerical solution of initial value problem in differential-algebraic equations”, North-Holland, New York.

    Google Scholar 

  9. Bryson A. E. and Ho Y. C. (1975), “Applied Optimal Control”, Hemisphere Publishing Corporation.

    Google Scholar 

  10. Cao Y., Li S. and Petzold L. (2002), “Adjoint sensitivity analysis for Differential-Algebraic Equations: Algorithms and software”, J. Comp. Appl. Math.,149:171–192.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao Y. and Petzold L. (2003), “A posteriori error estimation and global error control for Ordinary Differential Equations by the adjoint method”, SIAM J. Sci. Comput., submitted for publication.

    Google Scholar 

  12. Chachuat B. and Latifi M. A. (2003), “GDO: a fortran90 program for global optimisation of problems with ordinary differential equations”, Technical report, LSGC-CNRS (Nancy, France), in preparation.

    Google Scholar 

  13. Esposito W. R. and Floudas C. A. (2000a), “Deterministic global optimization in nonlinear optimal control problems”, Journal of Global Optimization, 17:96–126.

    Article  Google Scholar 

  14. Esposito W. R. and Floudas C. A. (2000b), “Global optimization for the parameter estimation of differential-algebraic systems”, Industrial & Engineering Chemistry Research, 39(5):1291–1310.

    Article  Google Scholar 

  15. Fikar M. and Latifi M. A. (2002), “User’s guide for fortran dynamic optimisation code DYNO”, Technical report, LSGC-CNRS (Nancy, France) &STU Bratislava (Slovak Republic)“.

    Google Scholar 

  16. Floudas C. A (2000), “Deterministic global optimization: Theory, methods and applications”, Series in nonconvex optimization and its applications, Dordrecht, Kluwert Academic Publishers.

    Google Scholar 

  17. Floudas C. A., Pardalos P. M., Adjiman C. S., Esposito W. R., Gümüs Z. H., Harding S. T., Klepeis J. L., Meyer C. A. and Schweiger C. A. (1999), “Handbook of test problems in local and global optimization”, Series in nonconvex optimization and its applications, Dordrecht, Kluwert Academic Publishers.

    Google Scholar 

  18. Frank P. M. (1978), “Introduction to System Sensitivity Theory”, Academic Press, New York.

    Google Scholar 

  19. Harrison G. W. (1979), “Compartmental models with uncertain flow rates”, Mathematical Biosciences, 43:131–139.

    Article  MathSciNet  MATH  Google Scholar 

  20. Horst R. and Tuy H. (1996), “Global Optimization. Deterministic Approaches” (3rd edition), Springer-Verlag, Berlin.

    Google Scholar 

  21. Kearfott R. B. (1996), “INTERVAL.ARITHMETIC: A Fortran90 module for an interval data type”, ACM Transaction on Mathematical Software, 22(4):385–392.

    Article  MathSciNet  MATH  Google Scholar 

  22. Luus R. (1990), “Optimal control by dynamic programming using systematic reduction in grid size”, International Journal of Control, 51(5):995–1013.

    Article  MathSciNet  MATH  Google Scholar 

  23. Luus R. (1992), “Mutiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor”, Canadian Journal of Chemical Engineering, 70:780–785.

    Article  Google Scholar 

  24. Maranas C. D. and Floudas C. A. (1994), “Global minimum potential energy conformations of small molecules”, Journal of Global Optimization, 4:135–170.

    Article  MathSciNet  MATH  Google Scholar 

  25. Moore R. E. (1966), “Interval Analysis”, Prentice-Hall, Engelwood Cliffs, NJ.

    MATH  Google Scholar 

  26. Moore R. E. (1979), “Methods and Applications of Interval Analysis”, SIAM, Philadelphia, PA.

    Google Scholar 

  27. Neuman C. and Sen A. (1973), “A suboptimal control algorithm for constraint problems using cubic splines”, Automatica, 9:601–613.

    Article  MATH  Google Scholar 

  28. Neumaier A. (1993), “Global, rigorous and realistic bounds for the solution of dissipative differential equations. Part I: Theory”, Computing, 52:315–336.

    Article  MathSciNet  Google Scholar 

  29. Papamichail I. and Adjiman C. S. (2002), “A rigorous global optimization algorithm for problems with ordinary differential equations”, Journal of Global Optimization, 24:1–33.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pontryagin L. (1962), “The Mathematical Theory of Optimal Processes”,Interscience Publishers, New York.

    Google Scholar 

  31. Rosen O. and Luus R.(1997), “Global optimization approach to nonlinear optimal control”, Journal of Optimization Theory Applications, 73:547–562.

    Article  MathSciNet  Google Scholar 

  32. Ruban A. I. (1997), “Sensitivity coefficients for discontinuous dynamic systems”, Jounal of Computer and System Sciences International, 36(4):536–542.

    MathSciNet  MATH  Google Scholar 

  33. Schittkowski K. (1985), “NLPQL: a Fortran Subroutine Solving Constrained Nonlinear Programming Problems”, Annals of Operations Research“,5(6):485–500.

    MathSciNet  Google Scholar 

  34. Singer A. B. and Barton P. I. (2003), “Global solution of linear dynamic embedded optimization problems - Part I: Theory”, Journal of Optimization Theory & Applications, Submitted for publication.

    Google Scholar 

  35. Smith E. M. and Pantelides C. C. (1995), “Global optimisation of general process models”, In: “Global optimization in engineering design”, I.E. Grossmann Editor, Series in nonconvex optimization and its applications, Chapter 12, pp. 355–386, Dordrecht, Kluwert Academic Publishers.

    Google Scholar 

  36. Teo K., Goh G. and Wong K. (1991), “A Unified Computational Approach to Optimal Control Problems”, Pitman Monographs and Surveys in Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1991.

    MATH  Google Scholar 

  37. Tjoa I. B. and Biegler L. T. (1991), “Simulatneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems”, Industrial & Engineering Chemistry Research, 30:376–385.

    Article  Google Scholar 

  38. Tsang T. H., Himmelblau D. M. and Edgar T. F. (1975), “Optimal control via collocation and nonlinear programming”, International Jounal of Control, 21(5):763–768.

    Article  MATH  Google Scholar 

  39. Vassiliadis V. S., Canto E. B. and Banga J. R. (1999), “Second-order sensitivity of general dynamic systems with application to optimal control problems”, Chemical Engineering Science, 54(17):3851–3860.

    Article  Google Scholar 

  40. Vassiliadis V. S., Sargent R. W. and Pantelides C. C. (1994a), “Solution of a class of multistage dynamic optimisation problems - 1. Problems without path constraints”, Industrial & Engineering Chemistry Research, 33(9):2111–2122.

    Article  Google Scholar 

  41. Vassiliadis V. S., Sargent R. W. and Pantelides C. C. (1994b), “Solution of a class of multistage dynamic optimisation problems - 2. Problems with path constraints”, Industrial E Engineering Chemistry Research, 33(9):2123–2133.

    Article  Google Scholar 

  42. Walter W. (1970), “Differential and Integral Inequalities”, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Chachuat, B., Latifi, M.A. (2004). A New Approach in Deterministic Global Optimisation of Problems with Ordinary Differential Equations. In: Floudas, C.A., Pardalos, P. (eds) Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0251-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0251-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7961-4

  • Online ISBN: 978-1-4613-0251-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics