Skip to main content

Quasiconvexity, Fractional Programming and Extremal Traffic Congestion

  • Conference paper
Book cover Frontiers in Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 74))

Abstract

A classical problem in telecommunications is the determination of the extremal time congestion that can arise in a GI/M/N/N loss system with given arrival and service rates. A central difficulty was showing that a local extremum has to be global. The matter stood unresolved for many years but has recently been settled using quite delicate convex analysis. We treat this problem and some generalisations in a structurally simpler way by making use of quasiconvexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coyle A. J. (1989), “Sensitivity bounds in a GI/M/n/n system,” J. Austral. Math. Soc, Ser. B, Vol. 31, 135–149.

    Article  MathSciNet  MATH  Google Scholar 

  2. Coyle A. J. and Taylor P. G. (1992), “Bounds on the sensitivity of generalised semiMarkov processes with a single generally distributed lifetime,” Math. of Oper. Res.,Vol. 17, 132–147.

    Article  MathSciNet  MATH  Google Scholar 

  3. Coyle A. J. and Taylor P. G. (1995), “Tight bounds on the insensitivity of generalised semi—Markov processes with a single generally distributed lifetime,” J. Appl. Prob.,Vol. 32, 63–73.

    Article  MathSciNet  MATH  Google Scholar 

  4. Craven B. D. (1988), “Fractional Programming”, Sigma Series in Applied Mathematics, Vol. 4 Helderman Verlag, Berlin.

    Google Scholar 

  5. Dinkelbach W. (1967), “On nonlinear fractional programming,” Managt Sci., Vol. 13, 492–498.

    Article  MathSciNet  Google Scholar 

  6. Eckberg A. E. (1977), “Sharp bounds on Laplace-Stieltjes transforms, with applications to various queueing problems,” Math. of Oper. Res., Vol. 2, 135–142.

    Article  MathSciNet  MATH  Google Scholar 

  7. Peake M. and Pearce C. E. M. (2001), “On an extremal problem arising in queueing theory and telecommunications,” In Optimization & Related Fields, 119–134, Eds A. Rubinov & B. Glover, Kluwer, Dordrecht.

    Google Scholar 

  8. Peake M. and Pearce C. E. M. (2002), “On a convexity problem arising in queueing theory and electromagnetism,” In Differential Equations & Applications,Vol. 2, 149–158, Eds Y. J. Cho, J. K. Kim & K. S. Ha, Nova, Huntingdon.

    Google Scholar 

  9. Schaible S. (1978), “Analyse und Anwendungen von Quotientenprogrammen, Ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung,” In Mathematical Systems in Economics, Vol. 42, Hein Verlag, Königstein.

    Google Scholar 

  10. Schaible S. (1981), “Fractional programming: applications and algorithms,” Euro. J. of Operational Res., Vol. 7, 111–121.

    Article  MathSciNet  MATH  Google Scholar 

  11. Schaible S. and Ibaraki T. (1983), “Fractional programming,” Euro. J. of Operational Res., Vol. 12, 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sniedovich M. (1988), “Fractional programming revisited,” Euro. J. of Operational Res., Vol. 33, 334–341.

    Article  MathSciNet  MATH  Google Scholar 

  13. Stancu-Minasian I. M. (1997), “Fractional Programming: Theory, Methods & Applications”, Kluwer, New York.

    Google Scholar 

  14. Takács L. (1962), “Introduction to the Theory of Queues,” Oxford University Press, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Pearce, C.E.M. (2004). Quasiconvexity, Fractional Programming and Extremal Traffic Congestion. In: Floudas, C.A., Pardalos, P. (eds) Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0251-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0251-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7961-4

  • Online ISBN: 978-1-4613-0251-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics