Skip to main content

A Multi Dimensional Assignment Formulation for New Product Development Problems

  • Conference paper
  • 858 Accesses

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 74))

Abstract

This paper considers the application of an upper bounding technique to a maximization formulation of new product development (NPD) problems. NPD procedures are increasingly being used by many high-technology firms to rapidly develop multiple new products lines using a small but flexible workforce and infrastructure. Mathematically speaking, these problems are quite difficult and may be described as the allocation of heterogeneous resources to heterogeneous but perhaps interdependent activities. Typically, each resource may distribute its capacity among many activities, each resource is capable of processing more than one type of task to varying degrees of success, and activities may be processed by more than one resource either sequentially or simultaneously. NPDs may include precedence constraints, where sequencing, quite often in the form of simultaneity, for the beginning and ending of activities is carefully controlled while processing times and quality of services for resources are not independent. Network models for these problems are very difficult to pose since, unlike PERT, there are multiple projects, all interlinked with precedence. Consequently, a multi-dimensional assignment problem (MAP) formulation is proposed. Unfortunately, MAP data structures exhibit horrendous complexity for branch and bound when using continuous relaxations due to the very poor bound quality and cannot be solved for problems of even fairly small size. In this paper an upper bound problem is developed by exploiting a feature of the cost coefficients. This upper bound on the maximization formulation of the MAP with axial constraints preserves much of the structure of the original problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murphey R. A., Pardalos P. M., and Pitsoulis L. (1997), “A greedy randomized adaptive search procedure for the multitarget multisensor tracking problem,” Network Design: Connectivity and Facility Location, Panos M. Pardalos and Ding-Zhu Du (eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, American Mathematical Society pp. 277–301.

    Google Scholar 

  2. Murphey R. A., Pardalos P. M., and Pitsoulis L. (1998), “A Parallel GRASP for The Data Association Multidimensional Assignment Problem,” Parallel Processing of Discrete Problems, P.M. Pardalos (Ed.), Volume 106 of The IMA Volumes in Mathematics and Its Applications, Springer, pp. 159–179.

    Google Scholar 

  3. Repenning, N. (2000) “A Dynamic Model of Resource Allocation in Multi-Project Research and Development Systems,” System Dynamics Review, 16, 3: pp. 173–212.

    Article  Google Scholar 

  4. Poore A. B. and Rijavec N. (1993), “A Lagrangian Relaxation Algorithm for Multidimensional Assignment Problems arising from Multitarget Tracking,” SIAM Journal on Optimization, 3, pp. 544–563.

    Article  MathSciNet  MATH  Google Scholar 

  5. Poore A. B. and Rijavec N. (1994), Multidimensional Assignment Formulation of Data Association Problems Arising from Multitarget and Multisensor Tracking, Computational Optimization and Applications, 3, pp. 37–54.

    Article  Google Scholar 

  6. Staff of Research and Education Association (1988), Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms, Research and Education Association, Piscataway, NJ.

    Google Scholar 

  7. Urban, G. L. and J. R. Hauser (1993), Design and Marketing of New Products, Prentice-Hall, Second Edition.

    Google Scholar 

  8. Wang Y. and Perkins J. R. (2002), “Optimal resource allocation in new product development projects: a control theoretic approach,” IEEE Trans. Automatic Control, VOL. 47, NO. 8, pp. 1267–1276.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Murphey, R.A. (2004). A Multi Dimensional Assignment Formulation for New Product Development Problems. In: Floudas, C.A., Pardalos, P. (eds) Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0251-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0251-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7961-4

  • Online ISBN: 978-1-4613-0251-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics