Skip to main content

The Steiner Ratio and the Homochirality of Biomacromolecular Structures

  • Conference paper
Frontiers in Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 74))

Abstract

In this work we report on the existence of a new upper bound for the Steiner Ratio value of the Euclidean Steiner Problem in R 3 which was obtained by investigating deformed structures around the configuration made by regular tetrahedra bounded together at common faces. The new value does not violate the validity of the “3-sausage” configuration topology, but it is an explicit disproof of the conjecture based on a chain of regular tetrahedra as a realization of this topology. We have also analysed some implications of this result to the definition of a convenient chirality parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garey, M. R., Graham, R. L., Johnson, D. S. (1977), “The Complexity of Computing Steiner Minimal Trees,” SIAM J. Appl. Math. 32, 835–859.

    MathSciNet  MATH  Google Scholar 

  2. Hildebrandt, S. (1989), “The Calculus of Variations Today,” The Math. Intelligence, 11 (4)50–60.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ivanov, A. O. and Tuzhilin, A. A. (1994), “Minimal Networks-The Steiner Problem and its Generalizations,” CRC Press, Boca Raton.

    Google Scholar 

  4. MacGregor Smith, J. and Toppur, B. (1996) “Euclidean Steiner Minimal Trees, Minimum Energy Configurations and the Embedding Problem of Weighted Graphs in E 3,” Discrete Appl. Math., 71, 187–215.

    Article  MathSciNet  MATH  Google Scholar 

  5. Mondaini, R. (2001), “The Minimal Surface Structure of Biomolecules,” Proceedings of the I Brazilian Symposium on Mathematical and Computational Biology, ed. E-papers Ltda.,1–11 and references therein.

    Google Scholar 

  6. Gilbert, E. N. and Pollak, H. O. (1968), “Steiner Minimal Trees,” SIAM J. Appl. Math. 16, 1–29.

    MathSciNet  MATH  Google Scholar 

  7. Smith, W. D. (1992), “How to find Steiner Minimal Trees in Euclidean dSpace,” Algorithmica, 7, 137–177.

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, D-Z. and Hwang, F. K. (1990) “The Steiner ratio Conjecture of Gilbert and Pollak is True,” Proc. Nat. Acad. Sci. 87, 9464–9466.

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, D-Z. and Hwang, F. K. (1992), “The State of Art on Steiner ratio Problems,” Lecture Notes in Computing-Computing in Euclidean Geometry, World Sci. Publ., vol.1, 163–191, and references therein.

    MathSciNet  Google Scholar 

  10. Smith, W. D. and MacGregor Smith, J. (1995), “The Steiner Ratio in 3D Space,” Journ. Comb. Theory A69, 301–332.

    Article  Google Scholar 

  11. Du, D-Z. and Smith, W. D. (1996), “Disproofs of Generalized Gilbert-Pollak Conjecture on the Steiner Ratio in Three or more Dimensions,” Journ. Comb. Theory A74, 115–130.

    Article  MathSciNet  Google Scholar 

  12. Hwang, F. K., Richards, D. S. and Winter, P. (1992), “The Steiner Tree Problem,” Annals of Discrete Mathematics, 53, Elsevier Science Publishers B. V.

    Google Scholar 

  13. Coxeter, H. S. M., (1961), “Introduction to Geometry,” Wiley.

    Google Scholar 

  14. Mondaini, R. (2002), “The Disproof of a Conjecture on the Steiner Ratio in E3 and its Consequences for a Full Geometric Description of Macromolecular Chirality,” Proceedings of the Second Brazilian Symposium on Mathematical and Computational Biology, ed. E-papers Ltda., 101–177.

    Google Scholar 

  15. Cieslik, D. (1998), “Steiner Minimal Trees,”Kluwer Academic Publishers.

    Google Scholar 

  16. Courant, R. and John, F. (1974), “Introduction to Calculus and Analysis, vol.2,” Wiley.

    Google Scholar 

  17. Beightler, C. S., Philips, D. T. and Wilde, D. J. (1979), “Foundations of Optimization, 2nd ed.,” Prentice-Hall.

    Google Scholar 

  18. Glusker, J. P., Lewis, M. and Rossi, M. (1994), “Crystal Structure Analysis for Chemists and Biologists,” VCH Publishers, Inc.

    Google Scholar 

  19. Crick, F. (1970), “Central Dogma of Molecular Biology,” Nature, 227, 561–563.

    Article  Google Scholar 

  20. Gilat, G. (1994), “On Quantifying Chirality-Obstacles and Problems towards Unification,” J. Math. Chem. 15, 197–205.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Mondaini, R.P. (2004). The Steiner Ratio and the Homochirality of Biomacromolecular Structures. In: Floudas, C.A., Pardalos, P. (eds) Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0251-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0251-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7961-4

  • Online ISBN: 978-1-4613-0251-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics