Skip to main content

New Lower Bounds on the Maximum Number of Mutually Orthogonal Steiner Triple Systems

  • Chapter
Designs 2002

Part of the book series: Mathematics and Its Applications ((MAIA,volume 563))

Abstract

Two Steiner triple systems (STS) are orthogonal if their sets of triples are disjoint, and two disjoint pairs of points defining intersecting triples in one system fail to do so in the other. We define the quantity σ (n) as the size of a maximum collection of pairwise orthogonal STS of order n. Special starters in the finite fields are used to improve the best known lower bounds on σ (n) for prime-powers n ≡ 1 (mod 6), n < 500. Additionally, hill-climbing and isomorphisms are used together to show σ (n) ≥ 3 or 4 for certain other small n, including some orders n ≡ 3 (mod 6). Asymptotic existence for three mutually orthogonal STS is a consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Colbourn, P. B. Gibbons, R. Mathon, R. C. Mullin, and A. Rosa, The spectrum of orthogonal Steiner triple systems, Canad. J. Math. 46 (2) (1994), 239–252.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. H. Dinitz, Room n-cubes of low order, J. Austral. Math. Soc. (A) 36 (1984), 237–252.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. H. Dinitz, “Starters” in The CRC Handbook of Combinatorial Designs, (C. J. Colbourn and J. H. Dinitz, eds.) CRC Press, Inc., 1996, 467–473.

    Google Scholar 

  4. J. H. Dinitz and D. R. Stinson, “Room squares and related designs,” in Contemporary Design Theory: A Collection of Surveys (J. H. Dinitz and D. R. Stinson, eds) John Wiley & Sons, New York, 1992, 137–204.

    Google Scholar 

  5. P. Dukes and E. Mendelsohn, Skew-orthogonal Steiner triple systems, J. Combin. Des. 7 (1999), 431–440.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. B. Gibbons, A census of orthogonal Steiner triple systems of order 15, Ann. Discrete Math. 26 (1985), 165–182.

    MathSciNet  Google Scholar 

  7. P. B. Gibbons and R. A. Mathon, The use of hill-climbing to construct orthogonal Steiner triple systems, J. Combin. Des. 1 (1993), 27–50.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. B. Gross, On the maximal number of pairwise orthogonal Steiner triple systems, J. Combin. Theory (A) 19 (1975), 256–263.

    Article  MATH  Google Scholar 

  9. R. C. Mullin and E. Nemeth, On furnishing Room squares, J. Combin. Theory 7 (1969), 266–272.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. C. Mullin and E. Nemeth, On the nonexistence of orthogonal Steiner triple systems of order 9, Canad. Math. Bull. 13 (1970), 131–134.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. D. O’Shaughnessey, A Room design of order 14, Canad. Math. Bull. 11 (1968), 191–194.

    Article  MathSciNet  Google Scholar 

  12. S. Schreiber, Cyclical Steiner triple systems orthogonal to their opposites, Discrete Math. 77 (1989), 281–284.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. D. Wallis, Combinatorial Designs, Dekker 118, New York, 1988.

    Google Scholar 

  14. L. Zhu, A construction for orthogonal Steiner triple systems, Ars Combin. 9 (1980), 253–262.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dinitz, J.H., Dukes, P. (2003). New Lower Bounds on the Maximum Number of Mutually Orthogonal Steiner Triple Systems. In: Wallis, W.D. (eds) Designs 2002. Mathematics and Its Applications, vol 563. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0245-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0245-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7958-4

  • Online ISBN: 978-1-4613-0245-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics