Conjugate Orthogonal Diagonal Latin Squares with Missing Subsquares

  • Frank E. Bennett
  • Beiliang Du
  • Hantao Zhang
Part of the Mathematics and Its Applications book series (MAIA, volume 563)


We shall refer to a diagonal Latin square which is orthogonal to its (3, 2, 1)-conjugate, and the latter is also a diagonal Latin square, as a (3, 2, 1)-conjugate orthogonal diagonal Latin square, briefly CODLS. This article investigates the spectrum of CODLS with a missing sub-square. The main purpose of this paper is two-fold. First of all, we show that for any positive integers n ≥ 1, a CODLS of order υ with a missing subsquare of order n exists if υ ≥ 13n/4 + 93 and υ - n is even. Secondly, we show that for 2 ≤ n ≤ 6, a CODLS of order υ with a missing subsquare of order n exists if and only if υ ≥ 3n + 2 and υ - n is even, with one possible exception.


Stein Tral Dene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.E. Bennett, B. Du, and H. Zhang, Existence of conjugate orthogonal diagonal Latin squares, J. Combin. Designs, 5(1997), 449–461.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    F.E. Bennett, B. Du, and H. Zhang, Existence of self-orthogonal diagonal Latin squares with a missing subsquare, Discrete Math., to appear.Google Scholar
  3. [3]
    F.E. Bennett, L. Wu, and L. Zhu, Conjugate orthogonal Latin squares with equal-sized holes, Ann. Discrete Math., 34(1987), 6580.Google Scholar
  4. [4]
    F.E. Bennett, L. Wu and L. Zhu, Further results on incomplete(3,2,1)-conjugate orthogonal idempotent Latin squares, Discrete Math., 84(1990), 1–14.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    F.E. Bennett and L. Zhu, Incomplete conjugate orthogonal idempotent Latin squares, Discrete Math., 65(1987), 5–21.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    F.E. Bennett and L. Zhu, Conjugate-orthogonal Latin squares and related structures, J. Dinitz & D. Stinson (Editors), Contemporary design theory: A collection of surveys, Wiley, New York, 1992, pp. 41–96.Google Scholar
  7. [7]
    C.J. Colbourn and J.H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, Inc., Boca Raton, 1996.CrossRefMATHGoogle Scholar
  8. [8]
    J. Niles and A.D. Keedwell, Latin squares and their applications, Academic Press, New York and London, 1974.Google Scholar
  9. [9]
    J. Doyen and R.M. Wilson, Embeddings of Steiner triple systems, Discrete Math., 5(1973), 229–239.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    B. Du, Self-orthogonal diagonal Latin square with missing sub-square, JCMCC, 37(2001), 193–203.MATHGoogle Scholar
  11. [11]
    M. Greig, Designs from projective planes and PBD bases, J. Combin. Designs 7 (1999), 341–374.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    M.J. Pelling and D.G. Rogers, Stein quasigroups I: combinatorial aspects, Bull. Austral. Math. Soc., 18(1978), 221–236.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    S.K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc., 85(1957), 228–256.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    R.M. Wilson, Concerning the number of mutually orthogonal Latin squares, Discrete Math., 9(1974), 181–198.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    R.M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts, 55(1974), 18–41.Google Scholar
  16. [16]
    H. Zhang and F.E. Bennett, Existence of some(3, 2, 1)-HCOLS and(3, 2, 1)-ICOILS, JCMCC, 27(1998), 53–64.MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Frank E. Bennett
    • 1
  • Beiliang Du
    • 2
  • Hantao Zhang
    • 3
  1. 1.Department of MathematicsMount Saint Vincent UniversityHalifaxCanada
  2. 2.Department of MathematicsSuzhou UniversitySuzhouP.R.China
  3. 3.Computer Science DepartmentThe University of IowaIowa CityUSA

Personalised recommendations