Skip to main content

The Boundary Element Method for Piezoelectric Materials

  • Chapter
Mechanics of Electromagnetic Solids

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 3))

  • 425 Accesses

Abstract

This paper presents an overview of the recent development of the boundary element method for analyzing piezoelectric materials. The piezoelectric boundary integral equation will be reviewed and the computation of nearly-singular integrals in the case of piezoelectric thin films will be emphasized. Several numerical examples will be provided to demonstrate the effectiveness of the boundary element method for analyzing the mechanics problems of piezoelectric materials, especially thin piezoelectric films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. F. Tiersten, Linear Piezoelectric Plate Vibrations ( Plenum Press, New York, 1969 ).

    Google Scholar 

  2. H. S. Tzou, Piezoelectric Shells: Distributed Sensing and Control of Continua ( Kluwer Academic Publishers, Dordrecht, 1993 ).

    Google Scholar 

  3. H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures-Modeling, Estimation and Control ( John Wiley & Sons, Chichester, 1996 ).

    MATH  Google Scholar 

  4. F. J. Rizzo, “An integral equation approach to boundary value problems of classical elastostatics,” Quart. Appl. Math., 25, 83–95 (1967).

    MATH  Google Scholar 

  5. T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988 ).

    Book  MATH  Google Scholar 

  6. S. Mukherjee, Boundary Element Methods in Creep and Fracture ( Applied Science Publishers, New York, 1982 ).

    MATH  Google Scholar 

  7. P. K. Banerjee, The Boundary Element Methods in Engineering, 2nd ed ( McGraw-Hill, New York, 1994 ).

    Google Scholar 

  8. J. D. Achenbach and H. Zhu, “Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites,” J. Appl. Mech., 57, 956–963 (1990).

    Article  ADS  Google Scholar 

  9. L. Pan, D. O. Adams, and F. J. Rizzo, “Boundary element analysis for composite materials and a library of Green’s functions,” Comput. & Struct., 66, 685–693 (1998).

    Article  MATH  Google Scholar 

  10. Y. J. Liu, N. Xu, and J. F. Luo, “Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method,” J. Appl. Mech., 67, 41–49 (2000).

    Article  MATH  ADS  Google Scholar 

  11. Y. J. Liu and N. Xu, “Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method,” Mechanics of Materials, 32, 769–783 (2000).

    Article  Google Scholar 

  12. X. L. Chen and Y. J. Liu, “Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method,” Computational Materials Science, 21, 86–94 (2001).

    Article  Google Scholar 

  13. J. F. Luo, Y. J. Liu, and E. J. Berger, “Analysis of two-dimensional thin structures (from micro-to nano-scales) using the boundary element method,” Comput. Mech., 22, 404–412 (1998).

    Article  MATH  Google Scholar 

  14. J. F. Luo, Y. J. Liu, and E. J. Berger, “Interfacial stress analysis for multi-coating systems using an advanced boundary element method,” Comput. Mech., 24, 448–455 (2000).

    Article  MATH  Google Scholar 

  15. X. L. Chen and Y. J. Liu, “Thermal stress analysis of multi-layer thin films and coatings by an advanced boundary element method,” CMES: Computer Modeling in Engineering & Sciences, 2, 337–350 (2001).

    MATH  Google Scholar 

  16. W. Ye and S. Mukherjee, “Optimal shape design of three-dimensional MEMS with applications to electrostatic comb drives,” Int. J. Numer. Methods Engrg., 45, 175–194 (1999).

    Article  MATH  Google Scholar 

  17. W. Ye and S. Mukherjee, “Design and fabrication of an electrostatic variable gap comb drive in micro-electro-mechanical systems,” CMES: Computer Modeling in Engineering & Sciences, 1, 111–120 (2000).

    Google Scholar 

  18. P. Ljung, M. Bachtold, and M. Spasojevic, “Analysis of realistic large MEMS devices,” CMES: Computer Modeling in Engineering & Sciences, 1, 21–30 (2000).

    Google Scholar 

  19. A. P. Peirce and J. A. L. Napier, “A spectral multipole method for efficient solution of large-scale boundary element models in elastostatics,” Int. J. Numer. Methods Engrg., 38, 4009–4034 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. E. Gomez and H. Power, “A multipole direct and indirect BEM for 2D cavity flow at low Reynolds number,” Engrg. Anal. Boundary Elements, 19, 17–31 (1997).

    Article  Google Scholar 

  21. Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K. Singer, R. A. V. D. Geijn, and K. S. Vemaganti, “A fast solution method for three-dimensional many-particle problems of linear elasticity,” Int. J. Numer. Methods Engrg., 42, 1215–1229 (1998).

    Article  MATH  Google Scholar 

  22. N. Nishimura, K.-i. Yoshida, and S. Kobayashi, “A fast multipole boundary integral equation method for crack problems in 3D,” Engrg. Anal. Boundary Elements, 23, 97105 (1999).

    Google Scholar 

  23. A. A. Mammoli and M. S. Ingber, “Stokes flow around cylinders in a bounded two-dimensional domain using multipole-accelerated boundary element methods,” Int. J. Numer. Methods Engrg., 44, 897–917 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. K.-i. Yoshida, “Applications of Fast Multipole Method to Boundary Integral Equation Method”, Ph.D. Dissertation, Department of Global Environment Engineering, Kyoto University (March 2001).

    Google Scholar 

  25. H. T. Wang and Z. H. Yao, “Application of fast multipole BEM for simulation of 2-D elastic body with large number of inclusions”, in: eds. Z. H. Yao and M. H. Aliabadi, Boundary Element Techniques ( Tsinghua University Press/Springer, Beijing, 2002 ) 77–82.

    Google Scholar 

  26. G. Krishnasamy, F. J. Rizzo, and Y. J. Liu, “Boundary integral equations for thin bodies,” Int. J. Numer. Methods Engrg., 37, 107–121 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. J. Liu and F. J. Rizzo, “Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation,” J. Acoust. Soc. Am., 102 (2), 926–932 (1997).

    Google Scholar 

  28. Y. J. Liu, “Analysis of shell-like structures by the boundary element method based on 3D elasticity: formulation and verification,” Int. J. Numer. Methods Engrg., 41, 541–558 (1998).

    Article  MATH  Google Scholar 

  29. S. H. Chen and Y. J. Liu, “A unified boundary element method for the analysis of sound and shell-like structure interactions. I. Formulation and verification,” J. Acoust. Soc. Am., 103, 1247–1254 (1999).

    Article  ADS  Google Scholar 

  30. Y. J. Liu, D. M. Zhang, and F. J. Rizzo, “Nearly singular and hypersingular integrals in the boundary element method”, in: eds. C. A. Brebbia and J. J. Rencis, Boundary Elements XV ( Computational Mechanics Publications, Worcester, MA, 1993 ) 453–468.

    Google Scholar 

  31. J. S. Lee and L. Z. Jiang, “Boundary element formulation for electro-elastic interaction in piezoelectric materials”, in: eds. C. A. Brebbia and J. J. Rencis, Boundary Elements XV ( Computational Mechanics Publications, Worcester, MA, 1993 ) 609–620.

    Google Scholar 

  32. J. S. Lee and L. Z. Jiang, “A boundary integral formulation and 2D fundamental solution for piezoelastic media,” Mech. Res. Comm., 21, 47–54 (1994).

    Article  MATH  Google Scholar 

  33. J. S. Lee, “Boundary element method for electroelastic interaction in piezoceramics,” Engrg. Anal. Boundary Elements, 15, 321–328 (1995).

    Article  Google Scholar 

  34. P. Lu and O. Mahrenholtz, “A variational boundary element formulation for piezoelectricity,” Mech. Res. Comm., 21, 605–611 (1994).

    Article  MATH  Google Scholar 

  35. T. Chen and F. Z. Lin, “Boundary integral formulations for three-dimensional anisotropic piezoelectric solids,” Comput. Mech., 15, 485–496 (1995).

    Article  MATH  Google Scholar 

  36. T. Chen, “Green’s functions and the non-uniform transformation problem in a piezoelectric medium,” Mech. Res. Comm., 20, 271–278 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Chen and F. Z. Lin, “Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions,” Mech. Res. Comm., 20, 501–506 (1993).

    Article  MATH  Google Scholar 

  38. C.-Y. Wang, “Green’s functions and general formalism for 2D piezoelectricity,” Appl. Math. Lett., 9, 1–7 (1996).

    Article  Google Scholar 

  39. M. L. Dunn and H. A. Wienecke, “Green’s functions for transversely isotropic piezoelectric solids,” Int. J. of Solids & Structures, 33, 4571–4581 (1996).

    Article  MATH  Google Scholar 

  40. L. R. Hill and T. N. Farris, “Three-dimensional piezoelectric boundary element method,” AIAA 1, 36, 102–108 (1998).

    MATH  Google Scholar 

  41. H. Ding, G. Wang, and W. Chen, “A boundary integral formulation and 2D fundamental solutions for piezoelectric media,” Comput. Methods Appl. Mech. Engrg., 158, 65–80 (1998).

    Article  MATH  Google Scholar 

  42. H. Ding and J. Liang, “The fundamental solutions for transversely isotropic piezoelectricity and boundary element method,” Comput. & Struct., 71, 447–455 (1999).

    Article  Google Scholar 

  43. L. Z. Jiang, “Integral representation and Green’s functions for 3-D time dependent thermo-piezoelectricity,” Int. J. of Solids & Structures, 37, 6155–6171 (2000).

    Article  MATH  Google Scholar 

  44. M. Kögl and L. Gaul, “A boundary element method for transient piezoelectric analysis,” Engrg. Anal. Boundary Elements, 24, 591–598 (2000).

    Article  MATH  Google Scholar 

  45. J. S. Yang and Y. J. Liu, “Boundary formulation and numerical analysis of elastic bodies with surface bonded piezoelectric films,” Smart Mater. Struct., 11, 308–31 (2002).

    Article  ADS  Google Scholar 

  46. Y. J. Liu, H. Fan, and J. S. Yang, “Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate,” Smart Mater. Struct., 9, 248–254 (2000).

    Article  ADS  Google Scholar 

  47. Y. J. Liu and H. Fan, “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes,” Engrg. Anal. Boundary Elements, 25, 77–91 (2001).

    Article  MATH  Google Scholar 

  48. Y. J. Liu and H. Fan, “Analysis of thin piezoelectric solids by the boundary element method,” Comput. Methods Appl. Mech. Engrg., 191, 2297–2315 (2002).

    Article  MATH  ADS  Google Scholar 

  49. X.-L. Xu and R. K. N. D. Rajapakse, “Boundary element analysis of piezoelectric solids with defects,” Composites Part B-Engineering, 29, 655–669 (1998).

    Article  Google Scholar 

  50. M. H. Zhao, Y. P. Shen, G. N. Liu, and Y. J. Liu, “Fundamental solutions for infinite transversely isotropic piezoelectric media”, in: eds. P. Santini, M. Marchetti, and C. A. Brebbia, Computational Methods for Smart Structures and Materials, 45–54 ( WIT Press/Computational Mechanics Publications, Boston, 1998 ).

    Google Scholar 

  51. M. H. Zhao, Y. P. Shen, G. N. Liu, and Y. J. Liu, “Dugdale model solutions for a penny-shaped crack in three-dimensional transversely isotropic piezoelectric media by boundary-integral equation method,” Engrg. Anal. Boundary Elements, 23, 573–576 (1999).

    Article  MATH  Google Scholar 

  52. E. Pan, “A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids,” Engrg. Anal. Boundary Elements, 23, 67–76 (1999).

    Article  MATH  Google Scholar 

  53. Q.-H. Qin, “Thermoelectroelastic analysis of cracks in piezoelectric half-space by BEM,” Comput. Mech., 23, 353–360 (1999).

    Article  MATH  Google Scholar 

  54. Q.-H. Qin, Fracture Mechanics of Piezoelectric Materials ( WIT Press, Southampton, UK, 2001 ).

    Google Scholar 

  55. Y. J. Liu and T. J. Rudolphi, “Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations,” Engrg. Anal. Boundary Elements, 8, 301–311 (1991).

    Article  Google Scholar 

  56. Y. J. Liu, “On the simple-solution method and non-singular nature of the BIE/BEM-A review and some new results,” Engrg. Anal. Boundary Elements, 24, 787–793 (2000).

    Google Scholar 

  57. T. A. Cruse and J. D. Richardson, “Non-singular Somigliana stress identities in elasticity,” Int. J. Numer. Methods Engrg., 39, 3273–3304 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. D. Richardson and T. A. Cruse, “Weakly singular stress-BEM for 2D elastostatics,” Int. J. Numer. Methods Engrg., 45, 13–35 (1999).

    Article  MATH  Google Scholar 

  59. M. Tanaka, V. Sladek, and J. Sladek, “Regularization techniques applied to boundary element methods, ” Appl. Mech. Rev., 47, 457–499 (1994).

    Article  ADS  Google Scholar 

  60. V. Sladek and J. Sladek, eds. Singular Integrals in Boundary Element Methods, Advances in Boundary Element Series,ed. C. A. Brebbia and M. H. Aliabadi (Computational Mechanics Publications, Boston, 1998).

    Google Scholar 

  61. S. Mukherjee, M. K. Chati, and X. L. Shi, “Evaluation of nearly singular integrals in boundary element contour and node methods for three-dimensional linear elasticity,” Int. J. of Solids & Structures, 37, 7633–7654 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  62. H. A. Sosa, “Plane problems in piezoelectric media with defects,” Int. J. of Solids & Structures, 28, 491–505 (1991).

    Article  MATH  Google Scholar 

  63. R. R. Ohs and N. R. Aluru, “Meshless analysis of piezoelectric devices,” Comput. Mech., 27, 23–26 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Liu, Y. (2003). The Boundary Element Method for Piezoelectric Materials. In: Yang, J.S., Maugin, G.A. (eds) Mechanics of Electromagnetic Solids. Advances in Mechanics and Mathematics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0243-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0243-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7957-7

  • Online ISBN: 978-1-4613-0243-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics