Skip to main content

The Extended Ritz Method in Stochastic Functional Optimization: An example of Dynamic Routing in Traffic Networks

  • Chapter
High Performance Algorithms and Software for Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

The classical Ritz method constrains the admissible solutions of functional optimization problems to take on the structure of linear combinations of fixed basis functions. Under general assumptions, the coefficients of such linear combinations become the unknowns of a finite-dimensional nonlinear programming problem. We propose to insert ”free” parameters to be optimized in the basis functions, too. This justifies the term “Extended Ritz Method.” If the optimal solutions of functional optimization problems belong to classes of d-variable functions characterized by suitable regularity properties, the Extended Ritz Method may outperform the Ritz method in that the number of free parameters increases moderately (e.g., polynomially) with d, whereas the latter method may be ruled out by the curse of dimensionality. Once the functional optimization problem has been approximated by a nonlinear programming one, the solution of the latter problem is obtained by stochastic approximation techniques. The overall procedure turns out to be effective in high-dimensional settings, possibly in the presence of several decision makers. In such a context, we focus our attention on large-scale traffic networks such as communication networks, freeway systems, etc. Traffic flows may vary over time. Then the nodes of the networks (i.e., the decision makers acting at the nodes) may be requested to modify the traffic flows to be sent to their neighboring nodes. Consequently, a dynamic routing problem arises that cannot be solved analytically. In particular, we address store-and-forward packet switching networks, which exhibit the essential difficulties of traffic networks. Simulations performed on complex communication networks show the effectiveness of the proposed method.

This work was supported in part by the MURST Project “New Techniques for the Identification and Adaptive Control of Industrial Systems” and in part by the CNR-Agenzia 2000 Project “New Algorithms and Methodologies for the Approximate Solution of Nonlinear Optimization Problems in a Stochastic Environment.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Glorennec, P.-Y., Delyon, B., Hjalmarsson, H., and Juditsky, A., Nonlinear Black-Box Modeling in System Identification: A Unified Overview, Automatica, Vol. 31, pp. 1691–1724, 1995.

    Article  MATH  Google Scholar 

  2. Leshno, M., LIN, V. YA., Pinkus, A., and Schocken, S., Multilayer Feed-forward Networks with a Nonpolynomial Activation Function Can Approximate Any Function, Neural Networks, Vol. 6, pp. 861–867, 1993.

    Article  Google Scholar 

  3. Girosi, F., Regularization Theory??Radial Basis Functions and Networks,From Statistics to Neural Networks. Theory and Pattern Recognition Applications, J. H. Friedman, V. Cherkassky, and H. Wechsler (Eds.), Computer and Systems Sciences Series, Springer Verlag, Berlin, Germany, pp. 166–187, 1993.

    Google Scholar 

  4. Park, J., and Sandberg, I. W., Universal Approximation Using Radial-BasisFunction Networks, Neural Computation, Vol. 3, pp. 246–257, 1991.

    Article  Google Scholar 

  5. Gelfand, I. M., and Fomin, S. V., Calculus of Variations,Prentice Hall, Englewood Cliffs, New Jersey, 1963.

    Google Scholar 

  6. Sirisena, H. R., and Chou, F. S., Convergence of the Control Parametrization Ritz Method for Nonlinear Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 29, pp. 369–382, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kantorovich, L. V., and Krylov, V. I., Approximate Methods of Higher Analysis, P. Noordhoff Ltd., Groningen, The Netherlands, 1958.

    MATH  Google Scholar 

  8. Beard, R. W., and Mclain, T. W., Successive Galerkin Approximation Algorithms for Nonlinear Optimal and Robust Control, International Journal of Control, Vol. 71, pp. 717–743, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. Attouch, H., Variational Convergence for Functions and Operators, Pitman Publishing, London, England, 1984.

    Google Scholar 

  10. Sejnowski, T. J., and Rosenberg, C., Parallel Networks That Learn to Pronounce English Text, Complex Systems, Vol. 1, pp. 145–168, 1987.

    MATH  Google Scholar 

  11. Zoppoli, R., and Parisini, T., Learning Techniques and Neural Networks for the Solution of N-Stage Nonlinear Nonquadratic Optimal Control Problems, Systems, Models and Feedback: Theory and Applications, Isidori and T. J. Tarn (Eds.), Birkhäuser, Boston, pp. 193–210, 1992.

    Google Scholar 

  12. Parisini, T., and Zoppoli, R., Neural Networks for Feedback Feedforward Nonlinear Control Systems,IEEE Transactions on Neural Networks, Vol. 5, pp. 436–449, 1994.

    Article  Google Scholar 

  13. Parisini, T., and Zoppoli, R., Neural Approximation for Multistage Optimal Control of Nonlinear Stochastic Systems, IEEE Transactions on Automatic Control, Vol. 41, pp. 889–895, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  14. Alessandri, A., Baglietto, M., Parisini, T., and Zoppoli, R., A Neural State Estimator with Bounded Errors for Nonlinear Systems,IEEE Transactions on Automatic Control, Vol. 44, pp. 2028–2042, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zoppoli, R., Sanguineti, M., and Parisini, T., Approximating Networks and the Extended Ritz Method for the Solution of Functional Optimization Problems, Journal of Optimization Theory and Applications, Vol. 112, pp. 403–439, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolmogorov, A. N., Über die beste Annäherung von Funktionen Einer Gegebenen Funktionenklasse, Annals of Mathematics, Vol. 37, pp. 107–110, 1936 (English translation: On the Best Approximation of Functions of a Given Class, in Selected Works of A. N. Kolmogorov, Vol. I, V. M. Tikhomirov Ed., pp. 202–205. Kluwer, 1991).

    Google Scholar 

  17. Pinkus, A., n-Widths in Approximation Theory, Springer Verlag, New York, 1986.

    Google Scholar 

  18. Barron, A. R., Universal Approximation Bounds for Superpositions of a Sigmoidal Function, IEEE Transactions on Information Theory, Vol. 39, pp. 930–945, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kůrková, V., and Sanguineti, M., Comparison of Worst-Case Errors in Linear and Neural Network Approximation, IEEE Transactions on Information Theory, Vol. 48, pp. 264–275, 2002.

    Article  MATH  Google Scholar 

  20. Kůrková, V., and Sanguineti, M., Bounds on Rates of Variable-Basis and Neural-Network Approximation, IEEE Transactions on Information Theory, Vol. 47, pp. 2659–2665, 2001.

    Article  MATH  Google Scholar 

  21. Kůrková, V., Savický, P., and Hlavácková, K., Representations and Rates of Approximation of Real-Valued Boolean Functions by Neural Networks, Neural Networks, Vol. 11, pp. 651–659, 1998.

    Article  Google Scholar 

  22. Giulini, S., and Sanguineti, M., On Dimension-Independent Approximation by Neural Networks and Linear Approximators, Proceedings of the International Joint Conference on Neural Networks, Como, Italy, pp. I283–I288, 2000.

    Google Scholar 

  23. Girosi, F., Jones, M., and Poggio, T., Regularization Theory and Neural Networks Architectures, Neural Computation, Vol. 7, pp. 219–269, 1995.

    Article  Google Scholar 

  24. Jones, L.K., A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training, Annals of Statistics, Vol. 20, pp. 608–613, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. Breiman, L., Hinging Hyperplanes for Regression, Classification, and Function Approximation, IEEE Transactions on Information Theory, Vol. 39, pp. 993–1013, 1993.

    Article  MathSciNet  Google Scholar 

  26. Mhaskar, H.N., Neural Networks for Optimal Approximation of Smooth and Analytic Functions, Neural Computation, Vol. 8, pp. 164–177, 1996.

    Article  Google Scholar 

  27. Girosi, F., and Anzellotti, G., Rates of Convergence of Approximation by Translates, A.I. Memo 1288, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

    Google Scholar 

  28. Kainen, P.C., Kůrková, V., and Sanguineti, M., Minimization of Error Functionals Under Weakened Compactness, submitted.

    Google Scholar 

  29. Kůrková, V., and Sanguineti, M., Error Estimates for Approximate Solution of Optimization Problems by Neural Networks, Workshop on Mathematical Diagnostics, Erice (Italy), 2002.

    Google Scholar 

  30. Kushner, H. J., and Yin, G. G., Stochastic Approximation Algorithms and Applications, Springer Verlag, New York, New York, 1997.

    MATH  Google Scholar 

  31. Marschak, J., and Radner, R., Economic Theory of Teams, Yale University Press, 1972.

    MATH  Google Scholar 

  32. Aicardi, M., Davoli, F., Minciardi, R., and Zoppoli, R., Decentralized Routing, Teams and Neural Networks in Communications, Proceedings 29th IEEE Conference on Decision and Control, pp. 2386–2390, 1990.

    Google Scholar 

  33. Parisini, T., and Zoppoli, R., Team Theory and Neural Networks for Dynamic Routing in Traffic and Communication Networks, Information and Decision Technologies, Vol. 19, pp. 1–18, 1993.

    MATH  Google Scholar 

  34. Baglietto, M. Parisini, T., and Zoppoli, R., Distributed-Information Neural Control: The Case of Dynamic Routing in Traffic Networks, IEEE Transactions on Neural Networks, Vol. 12, pp. 485–502, 2001.

    Article  Google Scholar 

  35. Segall, A., The Modeling of Adaptive Routing in Data-Communication Networks, IEEE Transactions on Communications, Vol. 25, pp. 85–95, 1977.

    Article  MATH  Google Scholar 

  36. Iftar, A., and Davison, E. J., A Decentralized Discrete-Time Controller for Dynamic Routing, International Journal of Control, Vol. 69, pp. 599–632, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ho, Y. C., and Chu, K.C., Team Decision Theory and Information Structures in Optimal Control Problems - Part 1, IEEE Transactions on Automatic Control, Vol. 17, pp. 15–22, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  38. Witsenhausen, H. S., A Counterexample in Stochastic Optimum Control, SIAM Journal on Control, Vol. 6, pp. 131–147, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  39. Baglietto, M., Parisini, T., and Zoppoli, R., Numerical Solutions to the Witsenhausen Counterexample by Approximating Networks, IEEE Transactions on Automatic Control, Vol. 46, pp. 1471–1477, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  40. Gallager, R. G., A Minimum Delay Routing Algorithm Using Distributed Computation, IEEE Transactions on Communications, Vol. 25, pp. 73–85, 1977.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Baglietto, M., Sanguineti, M., Zoppoli, R. (2003). The Extended Ritz Method in Stochastic Functional Optimization: An example of Dynamic Routing in Traffic Networks. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics