Skip to main content

A new algorithm for Solving Large Scale Molecular Distance Geometry Problems

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

Using a new formulation of both exact and general molecular distance geometry problems we obtain a smooth d.c. (difference of convex functions) program for them. A d.c. optimization algorithm (DCA) has been proposed. We investigate differents techniques that improve the computational efficiency of the algorithm. An important issue in the d.c. optimization approach, the nice effect of d.c. decompositions of the objective function is well exploited. Numerical experiments on the data derived from PDB data bank up to 4189 atoms (32400 variables) are presented which show the efficiency of the proposed algorithm.

This work was partially supported by the computer resources financed by “Contrat de Plan Interrégional du Bassin Parisien - Pôle interrégional de modélisation en Sciences pour Ingénieurs”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LE THI HOAI AN (1997), Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications, Habilitation à Diriger des Recherches, Université de Rouen, Juin 1997.

    Google Scholar 

  2. LE THI HOAI AN and PHAM DINH TAO (1999), ”DCA revisited and D.C. models of real world nonconvex optimization problems”, Technical Report, LMI, INSA-Rouen.

    Google Scholar 

  3. LE THI HOAI AN, PHAM DINH TAO (2000), ”D.c. programming approach for large scale molecular optimization via the general distance geometry problem ”, in “Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches ”, Kluwer Academic Publishers, pp. 301–339.

    Google Scholar 

  4. LE THI HOAI AN, PHAM DINH TAO, ”Large Scale Molecular Optimization from distance matrices by a d.c. optimization approach”, Revised version in SIAM J. Optimization.

    Google Scholar 

  5. G.M. CRIPPEN & T.F. HAVEL (1988), Distance Geometry and Molecular Conformation, John Wiley & Sons.

    MATH  Google Scholar 

  6. C. FLOUDAS, C.S. ADJIMAN, S. DALLWIG AND A. NEUMAIER (1998), A Global Optimization Method, αBB, for General Twice Differentiable Constrained NLPs - I: Theoretical Advances,Computational Chemical Engineering, vol. 22, pp. 11–37.

    Article  Google Scholar 

  7. T.F. HAVEL (1991), ”An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance,” Frog. Biophys. Mol. Biol., vol. 56, pp. 43–78.

    Article  Google Scholar 

  8. W. GLUNT, T.L. HAYDEN & M. RAYDAN (1993), ”Molecular conformation from distance matrices”, J. Comp. Chem., vol. 14, pp. 114–120.

    Article  Google Scholar 

  9. B.A. HENDRICKSON, The molecule problem: determining conformation from pairwise distances, Ph.D. thesis, Cornell University, Ithaca, New York, 1991.

    Google Scholar 

  10. B.A. HENDRICKSON (1995), ”The molecule problem: Exploiting structure in global optimization”, SIAM J. Optimization, vol. 5, pp. 835–857.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. B. HIRIART URRUTY and C. LEMARECHAL (1993). Convex Analysis and Minimization Algorithms, Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  12. J.J. MORE & Z. WU (1996), ”Issues in large-scale molecular optimization”, preprint MCS-P539–1095, Argonne National Laboratory, Argonne, Illinois 60439, Mars 1996.

    Google Scholar 

  13. J.J. MORE & Z. WU (1997), ”Global continuation for distance geometry problems”, SIAM J. Optimization, vol. 8, pp. 814–836.

    Article  MathSciNet  Google Scholar 

  14. J.J. MORE & Z. WU (1999), ”Distance geometry optimization for protein structures”, Journal of Global Optimization Vol. 15, pp. 219–234.

    Article  MathSciNet  MATH  Google Scholar 

  15. PHAM DINH TAO (1986), ”Algorithms for solving a class of non convex optimization problems. Methods of subgradients”, Fermat days 85. Mathematics for Optimization, Elsevier Science Publishers B.V. North-Holland.

    Google Scholar 

  16. PHAM DINH TAO, E.S. BERNOUSSI (1988), ”Duality in d.c. (difference of convex functions) optimization. Subgradient methods”, Trends in Mathematical Optimization, International Series of Numer. Math. Vol 84, Birkhäuser, pp. 277–293.

    Google Scholar 

  17. PHAM DINH TAO and LE THI HOAI AN (1997), ”Convex analysis approach to d.c. programming: Theory, Algorithms and Applications”, Acta Mathematica Vietnamica, (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday), vol. 22, 1, pp. 289–355.

    MathSciNet  MATH  Google Scholar 

  18. PHAM DINH TAO and LE THI HOAI AN (1998), ”D.c. optimization algorithms for trust region problem”, SIAM J. Optimization, 8, pp. 476–505.

    Article  MATH  Google Scholar 

  19. R.T. ROCKAFELLAR (1970), Convex Analysis, Princeton University, Princeton.

    MATH  Google Scholar 

  20. J.F. TOLAND (1979), ”On subdifferential calculus and duality in nonconvex optimization”, Bull. Soc. Math.France, Mémoire vol. 60, pp. 177–183.

    MathSciNet  Google Scholar 

  21. Z. ZOU, RICHARD.H. BIRD & ROBERT B. SCHNABEL (1997), ”A stochastic/pertubation global optimization algorithm for distance geometry problems”, J. of Global Optimization, vol. 11, pp. 91–105.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

An, L.T.H., Tao, P.D. (2003). A new algorithm for Solving Large Scale Molecular Distance Geometry Problems. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics