Mechanical Equilibrium and Equilibrium Systems

  • Tamás Rapcsák
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 68)

Abstract

In the paper, it is shown that the principle of virtual work considered an axiom of mechanics by Lagrange (1788) and Farkas (1906) can be embedded in a general equilibrium system, the quasi-variational inequalities introduced by Bensoussan and Lions in 1973, assuming force fields and holonomic-scleronomic constraints. Then, the dual form of the principle of virtual work is formulated in this case, the procedure for solving mechanical equilibrium problems, the existence of solutions and some examples are discussed.

Keywords

Manifold Librium Rium Clarification Controle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Anastasiei and H. Kawaguchi, A geometrical theory of time-dependent Lagrangians I. Non-linear connections, Tensor 48 (1989) 273–282.MathSciNetGoogle Scholar
  2. [2]
    Appell, Mécanique Rationelle, Gauthier-Villars, Paris, 1909.Google Scholar
  3. [3]
    V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, Heidelberg, Berlin, 1978, 1989.Google Scholar
  4. [4]
    S. Banach, Mechanics, Nauki, Warszawa, Wroclaw, 1951.MATHGoogle Scholar
  5. [5]
    A. Bensoussan and J.L. Lions, Nouvelle formulation des problèmes de controle impulsionnel et applications, Comptes Rendus de l’Académie des Sciences, Paris 276 (1973) A1189–A1192.MathSciNetGoogle Scholar
  6. [6]
    D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Mathematics of Operations Research 7 (1982) 211–222.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Cournot, Extension du principle des vitesses virtuelles au cas ou les conditions de liaison du système sont exprimées par des inégalités, Bulletin des Sciences Mathématiques (Première Section du Bulletin Universel des Sciences et de l’Industrie publié sous la direction de Férussac) 8 (1827) 165–170.Google Scholar
  8. [8]
    P. Cubiotti, Finite-dimensional quasi-variational inequalities associated with discontinuous functions, Journal of Optimization Theory and Applications 72 (1992) 577–582.MathSciNetCrossRefGoogle Scholar
  9. [9]
    M. De Luca and A. Maugeri, Quasi-variational inequalities and application to equilibrium problems with elastic demand, in: Nonsmooth optimization and related topics, F.H. Clarke et al. (eds.), Plenum Press, New York (1989) 61–77.Google Scholar
  10. [10]
    Gy. Farkas, Algebraic basis of the application of Fourier principle in mechanics, Mathematikai és Természettudományi Értesítő 16 (1898) 361–364. (in Hungarian)Google Scholar
  11. [11]
    J. Farkas, Theorie der einfachen Ungleichungen, Journal für die Reine und Angewandte Mathematik 124 (1901) 1–27.Google Scholar
  12. [12]
    J. Farkas, Beiträge zu den Grundlagen der analytischen Mechanik, Journal für die Reine und Angewandte Mathematik 13 (1906) 165–201.CrossRefGoogle Scholar
  13. [13]
    J. Fourier, Mémoire sur le statique, Journal de l’École Politechnique 5 (1798).Google Scholar
  14. [14]
    N.A. Fufaev, About an example of a system with a nonholonomic constraint of second order, Zeitschrift für Angewandte Mathematik und Mechanik 70 (1990) 593–594.CrossRefGoogle Scholar
  15. [15]
    F. Gantmacher, Lectures in analytical mechanics, Mir Publishers, Moscow, 1970.Google Scholar
  16. [16]
    C.F. Gauss, Über ein neues allgemeines Grundgesetz der Mechanik, Journal für die Reine und Angewandte Mathematik 4 (1829) 232–235.CrossRefGoogle Scholar
  17. [17]
    F. Giannessi, Separation of sets and gap functions for quasi-variational inequalities, in: Variational inequalities and network equilibrium problems, F. Giannessi and A. Maugeri (eds.), Plenum Press, New York and London (1995) 101–121.Google Scholar
  18. [18]
    W. Karush, Minima of function of several variables with inequalities as slide conditions, Master’s Thesis, Department of Mathematics, University of Chicago, 1939.Google Scholar
  19. [19]
    T. Kawaguchi and R. Miron, On the generalized Lagrange spaces with the metric γ ij(x) + (1/c2)yiyj, Tensor 48 (1989) 52–63.MathSciNetGoogle Scholar
  20. [20]
    W.K. Kim and K.-K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999) 185–198.MathSciNetCrossRefGoogle Scholar
  21. [21]
    H.W. Kuhn and A.W. Tucker, Nonlinear programming, in: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California (1951) 481–492.Google Scholar
  22. [22]
    D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, London, Toronto, 1980.MATHGoogle Scholar
  23. [23]
    J.L. Lagrange, Mécanique analytique I-II, Paris, 1788.Google Scholar
  24. [24]
    A. Maugeri, Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms, in: Variational inequalities and network equilibrium problems, F. Gian-nessi and A. Maugeri (eds.), Plenum Press, New York and London (1995) 195–211.Google Scholar
  25. [25]
    K. Nagy, Theoretical physics, Tankönyvkiadó, 1989. (in Hungarian)Google Scholar
  26. [26]
    M.A. Noor, Generalized quasi-variational inequalities and implicit Wiener-Hopf equations, Optimization 45 (1999) 197–222.MathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Ortvay, To the memory of Gyula Farkas academician, Memorial talks on the late academicians of the Hungarian Academy of Sciences 21 (1933) 15. (in Hungarian)Google Scholar
  28. [28]
    M. Ostrogradsky, Mémoire sur les déplacements instantanés des systèmes assujettis à des conditions variables, Mémoires de l’Académie Impériale des Sciences de Saint-Pétersbourg, Sixième Série 1 (1838) 565–600.Google Scholar
  29. [29]
    A. Prékopa, On the development of optimization theory, Alkalmazott Matematikai Lapok 4 (1978) 165–191. (in Hungarian)Google Scholar
  30. [30]
    A. Prékopa, On the development of optimization theory, American Mathematical Monthly 87 (1980) 527–542.MathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Rapcsâk and J. Szenthe, On the connection between mechanical equilibrium and nonlinear programming, Alkalmazott Matematikai Lapok 12 (1986) 161–174. (in Hungarian)MathSciNetGoogle Scholar
  32. [32]
    T. Rapcsâk and J. Szenthe, On the connection between mechanical force equilibrium and nonlinear programming, Zeitschrift für Angewandte Mathematik and Mechanik 70 (1990) 557–564.CrossRefGoogle Scholar
  33. [33]
    T. Rapcsâk, Smooth nonlinear optimization in R n, Kluwer Academic Publishers, 1997.Google Scholar
  34. [34]
    G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convex, Comptes Rendus de l’Académie des Sciences, Paris (1964) 4413–4416.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tamás Rapcsák
    • 1
  1. 1.Computer and Automation InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations